x
x

电源设计小贴士 | 设计 CCM 反激式转换器

发布时间:2025-6-17 21:46    发布者:eechina
关键词: CCM , 反激式 , 连续导通模式
作者:德州仪器

本文属于德州仪器“电源设计小贴士”系列技术文章,将聚焦于 CCM 反激式转换器设计,探讨 CCM 反激式转换器在中等功耗隔离应用中的优势。

连续导通模式 (CCM) 反激式转换器通常用于中等功耗的隔离型应用。与不连续导通模式 (DCM) 运行相比,CCM 运行的特点是具有更低的峰值开关电流、更低的输入和输出电容、更低的 EMI 以及更窄的工作占空比范围。由于具有这些优点并且成本低廉,它们已广泛应用于商业和工业领域。本文将提供反激式转换器设计注意事项中,53Vdc 至 12V/5A CCM 反激式转换器的功率级设计公式。

图 1 展示了工作频率为 250kHz 的 60W 反激式转换器的详细原理图。所选占空比在最低输入电压 (51V) 和最大负载时最大,为 50%。虽然也可以在超过 50% 占空比的情况下运行,但在本设计中无此必要。由于 57V 的高压线路输入电压相对较低,因此在 CCM 运行时,占空比只会降低几个百分点。但如果负载大幅降低,转换器进 DCM 运行模式,占空比就会显著降低。

image003.png
图 1. 60W CCM 反激式转换器原理图


设计规格

为防止磁芯饱和,绕组开/关时间的伏秒积必须保持平衡。这等于方程式 1:

image005.png
方程式 1

将 dmax 设置为 0.5 并计算 Nps12(Npri: N12V)和 Nps14(Npri: N14V)的匝数比,如方程式 2 和方程式 3 所示:

image007.png
方程式 2

image009.png
方程式 3

变压器匝数比现已设定(方程式 4 和方程式 5),因此可计算出工作占空比和 FET 电压。

image011.png
方程式 4

image013.png
方程式5

Vdsmax 表示 FET Q2 漏极上无振铃的“平顶”电压。振铃通常与变压器漏电感、寄生电容(T1、Q1、D1)和开关速度有关。选择 200V FET 时,FET 电压会再降低 25% 至 50%。变压器绕组之间必须实现良好耦合,如有可能,最大漏电感必须为 1% 或更低,以更大限度地减少振铃。

当 Q2 导通时,二极管 D1 的反向电压应力等于方程式 6:

image015.png
方程式 6

由于漏电感、二极管电容和反向恢复特性的影响,当次级绕组摆幅为负时,振铃现象很常见。具体请参阅方程式 7:

image017.png
方程式 7

我们选择了额定值为 30A/45V 的 D2PAK 封装,以便在 10A 电流下将正向压降减至 0.33V。功率耗散等于方程式 8:

image019.png
方程式 8

建议使用散热器或气流进行适当的热管理。初级电感的计算公式为方程式 9:

image021.png
方程式 9

POUTMIN 是转换器进入 DCM 的位置,通常为 POUTMAX 的 20% 至 30%。

初级峰值电流出现在 VINMIN 时,等于:

image023.png
方程式 10

这对于确定最大电流检测电阻 (R18) 值而言是必要的,能够防止控制器的初级过流 (OC) 保护电路跳闸。对于 UCC3809,R18 两端的电压不能超过 0.9V,以保证全输出功率。在本例中,我们选择 0.18Ω。也可以使用更小的电阻,以减少功率损耗。但过小的电阻会增加噪声灵敏度,并使 OC 阈值处于高电平,有可能导致变压器饱和,更糟糕的是,甚至会导致 OC 故障期间出现与应力相关的电路故障。电流检测电阻耗散的功率为方程式 11:

image025.png
方程式 11

根据方程式 12 和方程式 13 估算 FET 导通损耗和关断开关损耗:

image027.png
方程式 12

image029.png
方程式 13

与 Coss 相关的损耗计算有些模糊,因为该电容具有相当高的非线性度,会随着 Vds 的增加而降低,在本设计中估计为 0.2W。

电容器要求通常包括计算最大均方根电流、获得预期纹波电压所需的最小电容以及瞬态保持。输出电容和 IOUTRMS 的计算公式为方程式 14 和方程式 15:

image031.png
方程式 14

image033.png
方程式 15

可以仅使用陶瓷电容器,但在直流偏置效应后需要 7 个陶瓷电容器才能实现 83μF。因此,我们只选择了足以处理均方根电流的电容器,然后使用了电感器—电容器滤波器来降低输出纹波电压并改善负载瞬态。如果存在较大的负载瞬态,可能需要额外的输出电容来减少压降。

输入电容等于方程式 16:

image035.png
方程式 16

同样,您必须考虑会损耗电容的直流偏置效应。如方程式 17 所示,均方根电流约为:

image037.png
方程式 17

图 2 展示了原型转换器的效率,而图 3 展示了反激式评估板。

image039.png
图 2. 转换器的效率和损耗决定了封装的选择和散热要求

image041.jpg
图 3. 60W 反激式评估硬件尺寸为 100mm x 35mm

要选择合适的补偿元件值,请查阅此处的帮助:补偿隔离电源
https://www.eetimes.com/power-ti ... power-supplies/?_ga


结语
本设计示例介绍了功能性 CCM 反激式设计的基本元件计算。然而,初始估算通常需要反复计算,以便进行微调。不过,为了获得运行良好且优化的反激式转换器,在变压器设计和控制环路稳定等方面,往往还需要做更多的细节工作。

本文地址:https://www.eechina.com/thread-888947-1-1.html     【打印本页】

本站部分文章为转载或网友发布,目的在于传递和分享信息,并不代表本网赞同其观点和对其真实性负责;文章版权归原作者及原出处所有,如涉及作品内容、版权和其它问题,我们将根据著作权人的要求,第一时间更正或删除。
您需要登录后才可以发表评论 登录 | 立即注册

厂商推荐

  • Microchip视频专区
  • 更佳设计的解决方案——Microchip模拟开发生态系统
  • 深度体验Microchip自动辅助驾驶应用方案——2025巡展开启报名!
  • 你仿真过吗?使用免费的MPLAB Mindi模拟仿真器降低设计风险
  • Cortex-M4外设 —— TC&TCC结合事件系统&DMA优化任务培训教程
  • 贸泽电子(Mouser)专区

相关视频

关于我们  -  服务条款  -  使用指南  -  站点地图  -  友情链接  -  联系我们
电子工程网 © 版权所有   京ICP备16069177号 | 京公网安备11010502021702
快速回复 返回顶部 返回列表