如何创建机器学习环境-基于瑞芯微米尔RK3576开发板

发布时间:2025-2-8 14:48    发布者:swiftman
关键词: 瑞芯微RK3576 , 国产处理器 , 米尔 , 机器学习 , 嵌入式
本篇源自:优秀创作者 lulugl

本文将介绍基于米尔电子MYD-LR3576开发板(米尔基于瑞芯微 RK3576开发板)的创建机器学习环境方案测试。


【前言】
【米尔-瑞芯微RK3576核心板及开发板】具有6TpsNPU以及GPU,因此是学习机器学习的好环境,为此结合《深度学习的数学——使用Python语言》
1、使用vscode 连接远程开发板

2、使用conda新建虚拟环境:

  1. root@myd-lr3576x-debian:/home/myir/pro_learn# conda create --name myenv python=3.9
复制代码


执行结果如下:

  1. root@myd-lr3576x-debian:/home/myir/pro_learn# conda create --name myenv python=3.9
  2. Channels:
  3. - defaults
  4. Platform: linux-aarch64
  5. Collecting package metadata (repodata.json): done
  6. Solving environment: done

  7. ## Package Plan ##

  8. environment location: /root/miniconda3/envs/myenv

  9. added / updated specs:
  10. - python=3.9


  11. The following packages will be downloaded:

  12. package | build
  13. ---------------------------|-----------------
  14. _libgcc_mutex-0.1 | main 2 KB defaults
  15. _openmp_mutex-5.1 | 51_gnu 1.4 MB defaults
  16. ca-certificates-2024.11.26 | hd43f75c_0 131 KB defaults
  17. ld_impl_linux-aarch64-2.40 | h48e3ba3_0 848 KB defaults
  18. libffi-3.4.4 | h419075a_1 140 KB defaults
  19. libgcc-ng-11.2.0 | h1234567_1 1.3 MB defaults
  20. libgomp-11.2.0 | h1234567_1 466 KB defaults
  21. libstdcxx-ng-11.2.0 | h1234567_1 779 KB defaults
  22. ncurses-6.4 | h419075a_0 1.1 MB defaults
  23. openssl-3.0.15 | h998d150_0 5.2 MB defaults
  24. pip-24.2 | py39hd43f75c_0 2.2 MB defaults
  25. python-3.9.20 | h4bb2201_1 24.7 MB defaults
  26. readline-8.2 | h998d150_0 381 KB defaults
  27. setuptools-75.1.0 | py39hd43f75c_0 1.6 MB defaults
  28. sqlite-3.45.3 | h998d150_0 1.5 MB defaults
  29. tk-8.6.14 | h987d8db_0 3.5 MB defaults
  30. tzdata-2024b | h04d1e81_0 115 KB defaults
  31. wheel-0.44.0 | py39hd43f75c_0 111 KB defaults
  32. xz-5.4.6 | h998d150_1 662 KB defaults
  33. zlib-1.2.13 | h998d150_1 113 KB defaults
  34. ------------------------------------------------------------
  35. Total: 46.2 MB

  36. The following NEW packages will be INSTALLED:

  37. _libgcc_mutex anaconda/pkgs/main/linux-aarch64::_libgcc_mutex-0.1-main
  38. _openmp_mutex anaconda/pkgs/main/linux-aarch64::_openmp_mutex-5.1-51_gnu
  39. ca-certificates anaconda/pkgs/main/linux-aarch64::ca-certificates-2024.11.26-hd43f75c_0
  40. ld_impl_linux-aar~ anaconda/pkgs/main/linux-aarch64::ld_impl_linux-aarch64-2.40-h48e3ba3_0
  41. libffi anaconda/pkgs/main/linux-aarch64::libffi-3.4.4-h419075a_1
  42. libgcc-ng anaconda/pkgs/main/linux-aarch64::libgcc-ng-11.2.0-h1234567_1
  43. libgomp anaconda/pkgs/main/linux-aarch64::libgomp-11.2.0-h1234567_1
  44. libstdcxx-ng anaconda/pkgs/main/linux-aarch64::libstdcxx-ng-11.2.0-h1234567_1
  45. ncurses anaconda/pkgs/main/linux-aarch64::ncurses-6.4-h419075a_0
  46. openssl anaconda/pkgs/main/linux-aarch64::openssl-3.0.15-h998d150_0
  47. pip anaconda/pkgs/main/linux-aarch64::pip-24.2-py39hd43f75c_0
  48. python anaconda/pkgs/main/linux-aarch64::python-3.9.20-h4bb2201_1
  49. readline anaconda/pkgs/main/linux-aarch64::readline-8.2-h998d150_0
  50. setuptools anaconda/pkgs/main/linux-aarch64::setuptools-75.1.0-py39hd43f75c_0
  51. sqlite anaconda/pkgs/main/linux-aarch64::sqlite-3.45.3-h998d150_0
  52. tk anaconda/pkgs/main/linux-aarch64::tk-8.6.14-h987d8db_0
  53. tzdata anaconda/pkgs/main/noarch::tzdata-2024b-h04d1e81_0
  54. wheel anaconda/pkgs/main/linux-aarch64::wheel-0.44.0-py39hd43f75c_0
  55. xz anaconda/pkgs/main/linux-aarch64::xz-5.4.6-h998d150_1
  56. zlib anaconda/pkgs/main/linux-aarch64::zlib-1.2.13-h998d150_1


  57. Proceed ([y]/n)? y


  58. Downloading and Extracting Packages:

  59. Preparing transaction: done
  60. Verifying transaction: done
  61. Executing transaction: done
  62. #
  63. # To activate this environment, use
  64. #
  65. # $ conda activate myenv
  66. #
  67. # To deactivate an active environment, use
  68. #
  69. # $ conda deactivate

  70. root@myd-lr3576x-debian:/home/myir/pro_learn#
复制代码

然后再激活环境:

  1. root@myd-lr3576x-debian:/home/myir/pro_learn# conda activate myenv
  2. (myenv) root@myd-lr3576x-debian:/home/myir/pro_learn#
复制代码

2、查看python版本号:

  1. (myenv) root@myd-lr3576x-debian:/home/myir/pro_learn# python --version
  2. Python 3.9.20
复制代码

3、使用conda install numpy等来安装组件,安装好后用pip list查看

编写测试代码:

  1. import numpy as np
  2. from sklearn.datasets import load_digits
  3. from sklearn.neural_network import MLPClassifier
  4. d = load_digits()
  5. digits = d["data"]
  6. labels = d["target"]

  7. N = 200
  8. idx = np.argsort(np.random.random(len(labels)))
  9. xtest, ytest = digits[idx[:N]], labels[idx[:N]]
  10. xtrain, ytrain = digits[idx[N:]], labels[idx[N:]]
  11. clf = MLPClassifier(hidden_layer_sizes=(128, ))
  12. clf.fit(xtrain, ytrain)

  13. score = clf.score(xtest, ytest)
  14. pred = clf.predict(xtest)
  15. err = np.where(pred != ytest)[0]
  16. print("score:", score)
  17. print("err:", err)
  18. print("actual:", ytest[err])
  19. print("predicted:", pred[err])
复制代码


在代码中,使用MLPClassifier对象进行建模,训练测试,训练数据集非常快,训练4次后可以达到0.99:

【总结】
米尔的这款开发板,搭载3576这颗强大的芯片,搭建了深度学习的环境,进行了基础的数据集训练,效果非常好!在书中记录训练要几分钟,但是这在这款开发板上测试,只要几秒钟就训练完毕,书中说总体准确率为0.97,但是我在这款开发板上有0.99的良好效果!


本文地址:https://www.eechina.com/thread-881481-1-1.html     【打印本页】

本站部分文章为转载或网友发布,目的在于传递和分享信息,并不代表本网赞同其观点和对其真实性负责;文章版权归原作者及原出处所有,如涉及作品内容、版权和其它问题,我们将根据著作权人的要求,第一时间更正或删除。
您需要登录后才可以发表评论 登录 | 立即注册

厂商推荐

  • Microchip视频专区
  • 想要避免发生灾难,就用MPLAB® SiC电源仿真器!
  • 5分钟详解定时器/计数器E和波形扩展!
  • 为何选择集成电平转换?
  • 无线充电基础知识及应用培训教程3
  • 贸泽电子(Mouser)专区

相关视频

关于我们  -  服务条款  -  使用指南  -  站点地图  -  友情链接  -  联系我们
电子工程网 © 版权所有   京ICP备16069177号 | 京公网安备11010502021702
快速回复 返回顶部 返回列表