吉时利源表万用表常见问题解答:四线测试法是什么

发布时间:2020-6-1 11:57    发布者:agitek2008
关键词: 吉时利源表

吉时利源表万用表一直备受客户青睐,在使用过程中经常有人问:四线测试法是什么?今天安泰测试就简单给大家分享一下到底什么是四线测试法。

四线测试法是目前为止最好的消除引线电阻引入误差(或将其将至最小的)的测试方案

  • 两线测量法:
  • 传统的电阻测量通常用的是两线测量法来进行测量,比如我们最常用的手持式万用表。测量时只需要将红黑表笔点在待测电阻的左右两端,万用表会自动添加一个激励电流或激励电压(自动激励大小与选择的档位有关,万用表中激励大小不可调)。添加激励电压的同时,测试被测件两端的电流;或者添加激励电流的同时,测试被测件两端的电压。再通过欧姆定律R=U/I 得到电阻值。如图1所示:

  • 其中:
    I为激励电流(测试电流)
    VM为万用表测得的电压
    RLEAD为引线电阻
    R为被测电阻
    HI 和LO为万用表的输出输入端
    测量结果为R=VM/I, 从图1的工作电路图我们可以得知这个测试结果实际上包含两部分:被测电阻R与两条引线电阻2*RLEAD。典型的引线电阻阻值大致在1毫欧到10毫欧,当然在被测电阻阻值较大的情况下,引线电阻的影响是可以被忽略的;但当被测电阻较小或者测试精度要求较高的情况下,引线电阻这项附加的误差源就不能够被忽略了。
    Rel选项:
    市面上一些新型的手持式万用表设计有rel选项(台式万用表一般都有),如吉时利台式万用表,其工作原理为:在测试测量之前先将红黑表笔短接,得到引线电阻阻值并记录此数据,稍后测得的电阻值直接减去记录中的引线电阻阻值,用这种数学方法来减小误差,提高测量精度。所得结果为:R=(VM/I) -2*RLEAD,在一般情况下,这种测量方法简便易用,精度又高于两线测量法。但实际测量过程中,引线电阻RLEAD并非定值,随着温度环境的变化,阻值也是会变化的。在Rel功能的数学计算过程中,是以按下rel选项那一时刻点的引线电阻带入计算的,如果测试员对测试测量精度有着更高的要求,建议使用四线法测量。
  • 四线测试法:
    四线测试法是目前为止最好的消除引线电阻引入误差(或将其将至最小的)的测试方案。其原理是:在两线法的基础上添加一组取样引线,用取样引线的测试结果来代替测试引线的测量结果进行计算,从而得到更准确的电阻值。如图2所示:


    其中:
    I为激励电流
    VM为万用表测得的电压
    RLEAD为引线电阻
    R为被测电阻
    源HI 源LO为万用表的输出激励电流端
    取样HI 取样LO为取样引线,即输入电压VM端
    在整个测试过程中取样引线上没有产生压降,所以引线电阻2*RLEAD并没有对测试产生影响。测得的电压VM和被测电阻R上的实际电压基本相同,即测量结果仍为R=VM/I。虽然取样引线上仍然有微小的电流流过,但在实际的测量中是可以被忽略的。与两线测试法相比,用四线测试法测量所得到的电阻值是不含有引线电阻的,故精度高于两线测试法。
    以吉时利2000型台式万用表举例:

    当使用两线测试法,只需要链接input 的HI 和LO端。如图3:


    当使用四线测试法,需要连接input的HI、LO、Sense HI、Sense LO 四个端口(Sense HI 和Sense LO为取样引线接口)。如图4:

    尤其需要注意:取样引线端(Sense HI 和Sense LO)应该尽可能的接近被测电阻的两端,距离越远引入的测试引线电阻就越多。如图5所示,取样引线的接触点与被测电阻之间仍有很长的一段引线,这种连接方法会增加误差。

此常见问题适用于 Keithley 2001 系列、Keithley 2002 系列、Keithley 2010 系列、DAQ6510、DMM6500万用表, Keithley 2100 系列、Keithley 2110 系列、泰克 4000 系列、Keithley 2700 万用表/数据采集/开关系统等,如果您还有疑问,欢迎咨询吉时利代理商-安泰测试www.agitek.com.cn


本文地址:https://www.eechina.com/thread-590998-1-1.html     【打印本页】

本站部分文章为转载或网友发布,目的在于传递和分享信息,并不代表本网赞同其观点和对其真实性负责;文章版权归原作者及原出处所有,如涉及作品内容、版权和其它问题,我们将根据著作权人的要求,第一时间更正或删除。
您需要登录后才可以发表评论 登录 | 立即注册

厂商推荐

  • Microchip视频专区
  • 想要避免发生灾难,就用MPLAB SiC电源仿真器!
  • 深度体验Microchip自动辅助驾驶应用方案——2025巡展开启报名!
  • 你仿真过吗?使用免费的MPLAB Mindi模拟仿真器降低设计风险
  • 更佳设计的解决方案——Microchip模拟开发生态系统
  • 贸泽电子(Mouser)专区

相关视频

关于我们  -  服务条款  -  使用指南  -  站点地图  -  友情链接  -  联系我们
电子工程网 © 版权所有   京ICP备16069177号 | 京公网安备11010502021702
快速回复 返回顶部 返回列表