研究发现人工界面可改写光的反射和折射定律

发布时间:2011-9-5 10:44    发布者:1770309616
关键词: 反射 , 人工界面 , 折射定律
光的折射和反射定律是几何光学的基础。但是美国哈佛大学物理学家用一系列实验演示了光线的传播可以不遵从这些经典定律。这意味着,或许有一天当你用一块平面镜端详自己容貌时,看到的却是哈哈镜的变形效果。光在不同介质中的传播速度不一样。当一束光从空气中斜射向水中,光束的传播方向会发生改变,这就是所谓的折射现象。它的准确表述即折射定律是很多年前由物理学家斯涅尔、数学家笛卡尔以及费马确立的。
这一定律表明,光线在界面的折射角仅由光在两种物质中的传播速度决定。而早在古希腊时期由欧几里德发现的反射定律更简单:光的反射角等于入射角。

  经典的反射和折射定律都很自然地认为一个界面仅仅是区分两种物质的理想边界,换句话说,是两种介质而不是它们的截面影响了光的传播。哈佛大学研究人员的创新在于意识到界面可以成为决定光的传播的因素。他们的实验表明,精巧设计的界面能够干预光的传播。

  研究人员利用硅片和空气界面处一层薄薄的金属阵列来演示一系列违背经典反射和折射定律的现象。这个阵列中的每个组成单元都类似微小的英文字母“V”,其大小和间距都远小于光的波长以及入射光束横截面的尺寸。这些“V”字形的单元的大小、夹角和朝向都不同,这样设计是为了控制光波和不同单元的相互作用时间:每个金属“V”都类似一个光的陷阱,能够将光波“囚禁”一段时间再释放出来。

  阵列的设计使得这个“囚禁”时间沿界面从右向左线性增加,这样即使垂直入射,光束不同部分经历不同的时间延迟,透射以及反射光束就不再沿着垂直于界面的方向传播了。而当光以倾斜的角度入射,按不同的“界面”设计,反射和折射光可以被操纵朝向任何方向。反射角不一定等于入射角,反射光甚至可以被“反弹”回光源方向,而不是像一般情况那样折向远离光源方向。这就是平面镜可以有哈哈镜的效果的原因。

  这项成果2日发表在美国新一期《科学》杂志上,第一作者虞南方目前在哈佛大学工程和应用科学学院做博士后研究,虞南方2004年本科毕业于北京大学电子学系,2009年在哈佛大学获博士学位。

  利用界面来控制光束不同部分的时延是一个具有革新意义的概念。虞南方告诉记者,他们已用这种人工界面产生了“光涡旋”,这种奇异的光束在空间里螺旋前进,因而可以用来操纵旋转微小的悬浮颗粒。他预计,这一概念将衍生出一系列有用的光学元件,比如可以纠正相差的超薄平面聚焦镜片、可以采集大范围入射阳光的太阳能汇聚装置。哈佛大学目前已就这一成果提出专利申请。
本文地址:https://www.eechina.com/thread-75614-1-1.html     【打印本页】

本站部分文章为转载或网友发布,目的在于传递和分享信息,并不代表本网赞同其观点和对其真实性负责;文章版权归原作者及原出处所有,如涉及作品内容、版权和其它问题,我们将根据著作权人的要求,第一时间更正或删除。
Liming 发表于 2011-9-7 13:10:12
哈佛大学创造怪异光学现象 挑战折射反射定律

据国外媒体报道,美国哈佛大学工程与应用科学的研究人员利用一种新的技术诱导光线的路径,使得发现百年的光线反射和折射定律受到挑战。而这个技术被称为相位不连续技术。这一研究发现使得在预测光线由一个介质进入另一个介质的时候(例如,从空气进入玻璃的路径),出现了一个新的数学规律,其有别于经典的折射和反射定律。目前该研究发现已经发表在最新的《科学》杂志上。
08411001536027775.jpg


哈佛研究人员使用新技术创建的怪异光学现象

据参与该研究的哈佛大学工程与应用科学应用物理学与文顿海斯电气工程高级研究员组成的联合小组,首席联合研究员分别为费德里科卡帕索(Federico Capasso)和罗伯特L华莱士(Robert L. Wallace)教授介绍:使用特殊的平面,我们创建了一个平面哈哈镜的效果。我们的发现使得光学进入了一个全新的领域,并打开了令人振奋人心的光电子技术的大门。
人类自科学发展以后,认识光线的行为之后,都知道光是在不同的介质中,以不同的速度进行传播。如果光线遇到一个玻璃等材料,并以一定的角度入射,就会发生反射和折射现象,也正是因此,波前的方向就发生了改变。我们根据传统意义上的折射和反射定律,全世界的物理学课上都可以进行光线行为方式的推导,我们还可以结合入射角度以及两个介质的性质计算出折射角和反射角的具体的数值。然而,当研究人员将光线打在金属纳米材料的结构图上,根据实验中表面光的撞击行为,研究人员意识到,使用传统意义上的方程不足以形容实验室中所观察到的关于光线奇怪路径的现象。
在实验过程中,研究人员设计了一个纳米级的谐振器阵列,比一个波长还要薄一点儿,可在硅表面创建一个恒定的梯度值。通过可视化的研究技术,使得光线可以下部分击中表面,还可以保持垂直入射。而处于左边的谐振器保持的能量要长于右边的谐振器。但是,如果没有这个整列的存在,这个光线是平行的。
通过哈佛大学的这个研究,科学家也发现了一个新的广义范围上的光线定律,实验证明这组的数据是正确的,而且也将证实了在两个介质之间新的路径方式。据哈佛大学工程与应用科学卡帕索实验室副研究员于南方(Nanfang Yu)认为:通常情况下,比如说一个池塘附近,空气和水之间边界就形成了两个不同的路径方式。但是,在这个特殊的情况下,介质与介质之间的边界附近,成为了一个活跃的界面,可以弯曲光线本身。
而本次研究实验的关键是使用了微小镀金的天线蚀刻在硅的表面。该阵列结构在总体尺度上都做的很薄,整个阵列结构在规模上比撞击的光线波长要薄很多。这就意味着,与传统角度上而言,光学系统设计的边界之间的空气和硅赋予了一个突然产生的相移,这就是被认为是第二阶段不连续性的体现。
在实验室的数组中,每个天线都是一个很小的谐振器,可以不抓光线,持有特定的在一定时间内进行能量释放。整个硅表面纳米谐振器具有不同类型的梯度,可以有效地弯曲光当光线进入就开始通过新的媒介传播。由此产生的各种奇怪的现象,打破了旧的规则,创造出来的光线会以任意的方式进行,并且出现反映和折射,由表面上的图案而定。而研究针对新发现的光线行为,为了概括反射还有折射等科学定律,哈佛大学的研究人员增加了一些新的设计方程,可以传授相移梯度。更重要的是,在表面梯度缺少的情况下,新的定律可达到众所周知的程度。
据一位在卡帕索研究小组的访问学者芝诺(Zeno Gaburro)认为:通过接口结合相位不连续的渐变,光线的反射和折射规律,成为可重新定义的定律,并且伴随着新的现象出现。反射的激光束可以被弹开,而不是向前,还可以创建负折射现象,对全反射有一个全新的视角。此外,光的偏振也可以得到控制,这意味着在光线输出上发生了一个本质性的设计定义。研究人员已经成功地生产出涡束,就是一种螺旋形的光流。他们还设想了平面的镜头,可以集中无畸变的图像。
您需要登录后才可以发表评论 登录 | 立即注册

厂商推荐

  • Microchip视频专区
  • 无线充电基础知识及应用培训教程3
  • 安静高效的电机控制——这才是正确的方向!
  • 为何选择集成电平转换?
  • PIC18-Q71系列MCU概述
  • 贸泽电子(Mouser)专区
关于我们  -  服务条款  -  使用指南  -  站点地图  -  友情链接  -  联系我们
电子工程网 © 版权所有   京ICP备16069177号 | 京公网安备11010502021702
快速回复 返回顶部 返回列表