历史背景 1990年代初始,在美国、欧洲和日本等国,先后立法对铅在工业上的应用加以限制,并进行无铅焊材的研究与相关技术的开发工作。 含铅焊材与铅合金表面实装技术(SMT),长期以来, ...
早期的电子产品,如电子管收音机,采用薄铁板支架,在支架上安装绝缘的陶瓷基座从而实现电子产品的组装。随着新型的高聚物绝缘材料的出现,特别是在20世纪40年代晶体管发明之后,出现了印制电路 ...
传统上,EMC一直被视为「黑色魔术(black magic)」。其实,EMC是可以藉由数学公式来理解的。不过,纵使有数学分析方法可以利用,但那些数学方程式对实际的EMC电路设计而言,仍然太过复杂了。幸 ...
什么是去耦和旁路?去耦和旁路可以防止能量从一个电路传播到另一个电路上去,进而提高电源分配系统的质量。 回顾前面章节的介绍,可知数字逻辑电路通常涉及两个可能的状态,“0”和“I”(参 ...
在电容器中,介质材料决定了自谐振频率的零点值。所有介质材料都是温度敏感的。电容器的电容值将随环境温度的变化而改变。在特定温度下,电容值大量改变可能导致运行性能的降低,或作为旁路和去 ...
多层PCB通常包括一对或多对电压和接地层。电源层的功能等同于一个低电感的电容器,能够约束在元件和信道上产生的RF电容。机壳一般会有多个接地点连接到接地层,有助于减小板子的机壳和板间、板 ...
在选择一个具体电容时,不仅要考虑其自谐振频率,还同样要考虑电容的介质材料工艺。电容产品中最常用的介质材料是BTC(Barium Titanite Ceramic)。这种材料有高的介电常数,能允许小体积的电容 ...
现代微处理器、数字信号处理器和专用集成电路等技术的飞速发展,已成为电磁干扰的主要来源。如今 的主要辐射源不再是由不合理的步线、板结构、阻抗失配或电源不稳定原因所产生。器件的工作频率 ...
多层PCB通常用于高速、高性能的系统,其中一些层用于电源或地参考平面,这些平面通常是没有分割的实体平面。无论这些层做什么用途,电压为多少,它们将作为与之相邻的信号走线的电流返回路径。 ...
大部分的PCB都包含一些功能子系统或区域,每个功能子系统都由一组器件和它们的支持电路组成。比如,一个典型的主机板可以划分为以下区域:处理器、时钟逻辑、存储器、总线控制器、总线接口、PCT ...
在确定PCB的材料、叠层设计、尺寸,以及整体的分区构想以后,就要进行元件布局,具体说来就是将所有元件安置到PCB上的合适位置上。好的元件布局能够加强PCB的电磁兼容性,也是好的布线前提。 ...
如果一个数字系统的时钟频率达到或者超过50MHz,而且工作在这个频率之上的电路已经占到了整个电子系统一定的分量(比如说1/3),这就称为高速电路。
实际上信号的谐波频率比信号本身的重 ...