基于CPLD芯片EPM7128设计数据合并转换器

发布时间:2010-6-28 10:41    发布者:zealot
关键词: CPLD , EPM7128 , 数据合并 , 转换器
数据交换机的传送速率很高,当其和串行口通信时,在发送前把数据分为两部分分别发送到串行口,然后经过数据合并转换器把各个串行口的数据合并在一起并转换成PCM流。本文介绍了基于CPLD芯片EPM7128设计的数据合并转换器。

1 数据合并转换器硬件电路

1.1 主要硬件简介

EPM7128是可编程的大规模逻辑器件,为ALTERA公司的MAX7000系列产品,具有高阻抗、电可擦等特点,可用门单元为2500个,管脚间最大延迟为5ns,工作电压为+5V。

IDT7205为FIFO型异步读写的存储器芯片,容量为8192×9比特,存取时间为12ns,有空、半满、满三个标志位,最大功耗为660mW,工作电压为+5V。

MSM486DX属于PC104嵌入式系统的5X86系列,为AMD-133MHz CPU,具有COM1、COM2两个串口,一个LPT并口,一个FLOPPY接口,一个IDE接口,一个VGA/LCD接口,一个AT-KEYBOARD 接口,16个中断,额定功率为8W,工作电压为+5V。

1.2 数据合并转换器电路框图

可编程的数据合并转换器电路框图如图1所示。图中,DB为数据总线,AB为地址总线,R和W分别为读写信号线,INT5、INT7、INT10和INT11为四个中断,CS1、CS2和CS3是在CPLD内部生成的地址译码器Addr-encoder分别送给分频器、两个串行口的片选信号,ORG是晶振送给分频器的振荡脉冲,CLK 是分频器输出的脉冲FrameCLK和PCMCLK,WFIFO、RFIFO是由CPLD生成的包含地址信息的访问FIFO的读写脉冲, DATA_IN1和DATA_IN2为串行口输入数据,PCM_DATA是数据合并转换器输出的PCM流,PCMCLKA为输出的码同步时钟,WORLDCLKA为输出的字同步时钟。


1.3 电路工作分析

晶振把时钟脉冲送给分频器,分频器含有两个可编程的定时器。分频器把可控的FRAMECLK和PCMCLK送给CPLD,在CPLD内部经过逻辑组合形成三路脉冲信号,一路控制计数器形成INT5、INT7两个帧频中断触发脉冲,CPU接到中断后立即写FIFO;另一路控制移位寄存器把并行数据转换成串行数据PCM流;第三路形成RFIFO去连续读FIFO。两个串行口通过中断方式(INT10、INT11)接收到外部数据后,暂存缓冲区内,按一定格式由中断INT5控制写给FIFO。

2 CPLD内部逻辑电路

CPLD内部逻辑电路如图2所示。图中,虚线框内为CPLD内部电路,虚线框外为CPLD的I/O口。


2.1 地址译码器

地址译码器Addr-encoder用VHDL语言生成。Addr-encoder的输出有总线驱动器芯片74245的使能脉冲ENB,总线传输方向的使能脉冲DIR,写FIFO操作脉冲WFIFO,分频器和串行口的片选CS1、CS2和CS3,FIFO数据空满标志脉冲RFIFOFLAG,FIFO复位时钟脉冲WCTRL。

2.2 数据移位部分

FRAMECLK周期是PCMCLK 的8倍,它们都是分频器送来的脉冲。FRAMECLK反相后作为FIFO的读信号,两次反相后作为字同步时钟。PCMCLK直接作为移位寄存器74165的时钟触发脉冲,两者与非后的输出低电平作为74165重装载数据的触发电平。它们的信号时序如图3所示。


从三者的时序图可知,每当一个字节的最后一位完成移位后,在FRAMECLK脉冲反相的下降沿触发下读取FIFO数据,这时74165的装载使能74165STD恰好为低电平(与非结果),完成新数据装载,然后在PCMCLK脉冲的上升沿作用下开始新一轮次的数据移位。

2.3 帧长计数器部分

两个74161设计成1/64的分频器,也叫帧长计数器,此计数器的时钟为FRAMECLK,计数器的输出最高两位逻辑与为中断INT7,把与门输出与次高位逻辑异或为中断INT5。这样,INT7比INT5在时序上早半个周期。开机复位后,INT7脉冲首先产生,触发中断,CPU中断后在服务程序中把64个字节数据写到FIFO,然后屏蔽中断INT7,半个周期后,FIFO中还剩32个字节数据(因为FIFO的读脉冲和FRAMECLK反相同频)。然后中断INT5到来,CPU响应后,再写64个字节数据给FIFO,使FIFO中一直保持有数据的状态(可避免读FIFO正好落在两个写FIFO之间,FIFO因无数据而读死)。这样,每当中断INT5到来,都写64字节给FIFO,周而复始,所以把64字节定为帧长。

设PCMCLK的频率为f(MHz),则FRAMECLK的频率为f/8,由于帧长为64,所以有:帧频=f/(8×64),PCM流速率=f(bit/s)。分频器的分频比是通过软件设定的,所以PCM流的速率可编程。

3 软件设计

分频器编程:

outp(0x303,0x36)://方式3,方波。//
outp(0x300,0x50);//timer0,分频比为80。//
outp(0x300,0x00);
outp(0x303,0x74);//方式2,脉冲。//
outp(0x301,0x08);//timer1,分频比为8。//
outp(0x301,0x00)?

数据合并:

if((com1_count%24)==0) ;//串行口1的24字节数据放在
数组Frame的4~27的位置。//
{
com_buf1[com1_count++]=db1;
//串行口1接收数据//
int Original_Counter?
Original_Counter=com1_count/24?
memcpy(Frame[Original_Counter-1]+4,&com_buf1[com1_count-24],24);
if((com2_count%24)==0) ;//串行口2的24字节数据放在
数组Frame的28~51的位置。//
{
com_buf2[com2_count++]=db2
;//串行口2接收数据//
int Original_Counter;
Original_Counter=com2_count/24;
Memcpy(Frame[Original_Counter-1]+28,&com_
Buf2[com2_count-24],24) ;//合并后的数据放在Frame
? 数组中。//
写FIFO:
void Send_To_Fifo(int number); //Send_To_Fifo函数为中断
服务程序的一部分。//
{
for int i=0;i<64;i++)
outp(WFIFO Frame[number][i ]; //数组送给FIFO,
实现数据合并//
?}
本文地址:https://www.eechina.com/thread-13835-1-1.html     【打印本页】

本站部分文章为转载或网友发布,目的在于传递和分享信息,并不代表本网赞同其观点和对其真实性负责;文章版权归原作者及原出处所有,如涉及作品内容、版权和其它问题,我们将根据著作权人的要求,第一时间更正或删除。
您需要登录后才可以发表评论 登录 | 立即注册

厂商推荐

相关在线工具

相关视频

关于我们  -  服务条款  -  使用指南  -  站点地图  -  友情链接  -  联系我们
电子工程网 © 版权所有   京ICP备16069177号 | 京公网安备11010502021702
快速回复 返回顶部 返回列表