电源设计小贴士 29:估算热插拔 MOSFET 的瞬态温升——第 2 部分

发布时间:2012-4-27 17:54    发布者:看门狗
关键词: 电源设计
作者:Robert Kollman,德州仪器 (TI)

在本《电源设计小贴士》中,我们将最终对一种估算热插拔 MOSFET 温升的简单方法进行研究。在《电源设计小贴士28》中,我们讨论了如何设计温升问题的电路类似方法。我们把热源建模成了电流源。根据系统组件的物理属性,计算得到热阻和热容。遍及整个网络的各种电压代表各个温度。

本文中,我们把图 1 所示模型的瞬态响应与图 3 所示公开刊发的安全工作区域(SOA 曲线)部分进行了对比。

1.gif
图 1 将散热容加到 DC 电气模拟电路

根据 CSD17312Q5 MOSFET、引线框以及贴装 MOSFET 的印制电路板 (PWB) 的物理属性,估算得到图 1 的各个值。在查看模型时,可以确定几个重要的点。PWB 到环境电阻(105oC/W)为到环境的最低电阻通路,其设定了电路的允许 DC 损耗。将温升限制在 100oC,可将电路的允许 DC 损耗设定为 1 瓦。其次,存在一个 10 秒钟的 PWB 相关时间恒量,所以其使电路板完全发热的时间相当长。因此,电路可以承受更大的电脉冲。例如,在一次短促的脉冲期间,所有热能对芯片热容充电,同时在更小程度上引线框对热容充电。通过假设所有能量都存储于裸片电容中并求解方程式(dV = I * dt / C)得到 I,我们可以估算出芯片电容器可以存储多少能量。结果是,I =dV * C /dt = 100 oC * 0.013F / 1ms =1300 瓦,其与图 3 的 SOA 曲线图相一致。

图 2 显示了图 1 的仿真结果以及由此产生的电压响应。其功耗为 80 瓦,不同的时间恒量一眼便能看出。绿色曲线为裸片温度,其迅速到达一个 PWB 相关恒定电压(蓝色曲线)。您还可以看到一个引线框的第二时间恒量(红色曲线),其稍微有一些滞后。最后,您还可以看见 PWB 的近似线性充电,因为大多数热能(电流)都流入其散热电容。

2.gif
图 2 热能流入 PWB 时明确显示的三个时间恒量

我们进行了一系列的仿真,旨在验证模型的准确性。图 3 显示了这些仿真的结果。红色标注表示每次仿真的结果。将一个固定电源(电流)放入电路中,相应间隔以后对裸片电压(温升)进行测量。模型始终匹配 SOA 曲线。这样做的重要性是,您可以使用该模型的同时使用不同的散热片和 PWB 参数。例如,该 SOA 数据是针对缺乏强散热能力的最小尺寸 PWB。我们可以增加电路板尺寸来降低其环境热阻,或者增加铜使用量来提供更好的热传播—最终降低温度。增加铜使用量也可以提高散热能力。

3.gif
图 3 散热模型与指示点的 MOSFET CSD17312 SOA 曲线一致
本文地址:https://www.eechina.com/thread-90893-1-1.html     【打印本页】

本站部分文章为转载或网友发布,目的在于传递和分享信息,并不代表本网赞同其观点和对其真实性负责;文章版权归原作者及原出处所有,如涉及作品内容、版权和其它问题,我们将根据著作权人的要求,第一时间更正或删除。
您需要登录后才可以发表评论 登录 | 立即注册

厂商推荐

相关视频

关于我们  -  服务条款  -  使用指南  -  站点地图  -  友情链接  -  联系我们
电子工程网 © 版权所有   京ICP备16069177号 | 京公网安备11010502021702
快速回复 返回顶部 返回列表