查看: 322|回复: 0

工程师笔记 | 高频共模电流、电压和阻抗的测量 —— 以反激变换器为例

[复制链接]
发表于 2024-4-14 23:19:06 | 显示全部楼层 |阅读模式



变换器的EMI是怎么辐射出去的呢?

实际上,变换器工作的时候,电路中会有产生高频的dv/dt节点和di/dt环路,最终在变换器的输入和输出端之间形成一个高频的共模电压VA(如图1所示),而变换器的输入与输出线相当于一对双极天线(Dipole Antenna)。这个高频的共模电压会在输入、输出线上激励出高频的共模电流iA,并以电磁场的形式向外辐射能量。因此,如图1所示,依照戴维南定理,变换器的辐射模型可以简化成一个电压源及其串联的阻抗。



图1:电力电子变换器辐射EMI模型。

因此,如果想准确构建辐射模型并预测辐射EMI,必须知道模型中的关键参数,包括噪声源VS,激励电压VA,激励出的电流iA,源阻抗RS、XS,以及天线阻抗等。


那天线的阻抗又是怎么与辐射EMI相联系的呢?
      
       如图2所示,天线的能量可以看成以下几部分:一部分在两极之间相互转换,并不辐射到空间去,这部分无功对应的阻抗可以用jXA表示;一部分是发射出去的能量,用Rr来表示;最后一部分是天线上的电流在其本身电阻上产生的损耗,以Rl表示。由此,如图2右侧所示,在考虑天线的阻抗后,整体的辐射EMI模型就得到了。由此,我们将一个电磁场的模型转化成了一个电路模型,为工程师分析EMI问题提供了很大的便利。

图2:天线阻抗的等效模型。

最后,在辐射EMI测量中,实际测到的是变换器在一定距离外的某点产生的电磁场强度。以电场为例,在距离变换器为r的位置,电场强度的最大值Emax可以由(1)式得到:

买元器件现货上唯样商城!


其中,VS代表噪声源,η为波阻抗,D为方向性,表示该方向上的最大功率密度与半径为r的球面平均功率密度之比,可以通过测量或者仿真得到。

因此,我们可以看出,想预测辐射的最终结果,我们需要得到准确的噪声电压,共模电流以及阻抗。

下文从这三个方面,以一个反激变换器为例,来谈论怎样得到准确的测量结果。


2.反激变换器高频共模电流的测量


下图左图为反激变换器的拓扑及共模电流路径。

在共模路径上,原边主要有共模滤波器,整流桥,电解电容等;共模电流通过变压器流到副边,并流到输出线上。其中,整流桥的结电容在高频的时候阻抗很小,基本可以认为是短路;输入及输出的电解电容的阻抗也很小,高频的时候也可以认为短路。因此,输入线和输出线可以认为是电路中的两个节点(图中的b点与a点),并得到如图3右图所示的等效模型。其中VCM为等效的噪声电压源,我们会在下一节中详细分析,ZCMTrans和ZCMConv分别代表变压器共模阻抗和回路上其他元件(如PCB走线,滤波器等)的共模阻抗。从图中可以看出,输入输出线上同方向的电流即为要测的共模电流ICM。


图3:反激变换器的电路以及辐射模型。

图4即为共模电流的传统测法:高频电流钳同时钳住输入的火线与零线,并通过同轴线连接至频谱分析仪,得到共模电流的频谱。然而,这个测量方法会有两个误差。


图4:共模电流的传统测试方法。

其一在于,工作中的变换器与同轴线之间会有耦合(包括通过dv/dt节点与同轴线之间的电场耦合,以及变换器与大地之间的di/dt环路与同轴线之间的磁场耦合),会引入测量误差。图5中的a图分析了电场耦合产生的误差;其二在于,输入线的接地阻抗(Zg),即零线与大地之间的阻抗,是随着环境变化的,这个阻抗回路会对共模电流起到分流的作用,导致在不同环境下测试结果不一致,如图5中的b图所示。

图5:共模电流测试中近场耦合和接地阻抗的影响。

因此,为了解决这一问题,我们提出了如下图所示的改进方法。即在同轴线以及输入线的前端加多个磁环。磁环可在辐射频率段(30MHz~1GHz)提供高达数千欧姆的阻抗,从而有效避免耦合和接地阻抗带来的影响,由于测量的共模电流对于测试的同轴线来说,是一个差模信号,因此它不会受到磁环影响。

图6:共模电流的改进测试方法。



您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关于我们  -  服务条款  -  使用指南  -  站点地图  -  友情链接  -  联系我们
电子工程网 © 版权所有   京ICP备16069177号 | 京公网安备11010502021702
快速回复 返回顶部 返回列表