FPGA与DSP信号处理系统的散热设计

发布时间:2010-11-9 20:35    发布者:techshare
关键词: dsp , FPGA , 散热 , 信号处理
随着系统性能的不断提升,系统功耗也随之增大,如何对系统进行有效的散热,控制系统温度满足芯片的正常工作条件变成了一个十分棘手的问题。通常使用风冷技术对系统进行散热。采用风冷技术时要重点考虑散热效率问题,一般可以通过使用较好的导热材料和增大散热面积来实现,但这就带来了系统成本的提高和体积的增加,因此必须选择最优的结合点。另外,要充分考虑热量传播的方向,使其在以尽可能的路径传播到外界的同时,能够保证热量远离那些易受温度影响的器件。现在,一些公司也推出了进行系统散热设计的辅助工具,大大提高了系统设计的可靠性。

1 系统结构

本系统以FPGA作为高性能实时信号处理系统的数据采集和控制中心,2片DSP为数据处理中心,主要包括4个功能模块——数据采集模块、FPGA数据控制模块、DSP处理模块和通信模块,系统结构框图如图1所示。





系统使用外部5 V稳压电源作为主电源供电;采用50 MHz外部晶振输入,并在FPGA内部完成分频和倍频。复位方式有两种:上电复位和手动复位。在FPGA内部,通过计数器自动产生一个上电复位信号,然后让该信号与MAX811提供的复位信号经过与门,产生系统板上的复位信号,这样做既能保证上电复位的时间又能够保留MAX811手动复位的特点。

2 系统功耗估计

本系统的核心部分主要由1片FPGA(XC3S1500)与2片DSP(ADSP-TS201)组成,它们占据了系统功耗的主要部分,因此要对这部分功耗进行大致的估算,同时考虑到板上的其他器件,对估算的结果适当放宽,最终给出电源部分的具体设计参数。

(1)FPGA(XC3S1500)功耗估计

XC3S1500正常工作时需要提供3个电压:1.2 V内核电压、2.5 V以及3.3 V的I/O电压,其功耗估计情况如表1所列。





(2)DSP(ADSP-TS201)功耗估计

ADSP-TS201正常工作时需要提供3个电压:1.2 V内核电压、1.6 V片上DRAM电压以及2.5 V的I/O电压。当ADSP-TS201工作在600MHz时,其功耗情况如表2所列。





3 FLOPCB散热设计软件介绍

FLOPCB是英国Flomerics公司推出的专门用于PCB散热设计的软件。启动后其界面如图2所示。





该软件具有如下特点:

◆方便快速地建立PCB板级温度系统模型;

◆直观灵活的结果观测方式;

◆操作界面简单易用。

在进行散热设计时,通过使用FLOPCB给出了系统的散热方案。

4 系统散热设计方案

由表1与表2的功耗估计结果不难看出,ADSP-TS201及XC3S1500是系统中发热量最大的部分,可以看作系统的热源。在FLOPCB中,可以绘制出系统PCB的温度模型1,如图3所示。





在模型1中还未加入任何散热装置,仿真后结果如图4所示。





从图4中可以看到,ADSP-TS201附近的温度达到了75℃左右,已十分接近ADSP-TS201的正常工作温度,而XC3S1500周围的温度也达到了42.2℃。当使用30 mm(L)×30 mm(W)×15 mm(H)的散热片后,可构建温度模型2,如图5所示。仿真后结果如图6所示。





比较图4与图6不难看出,ADSP-TS201附近的温度降低到了55℃左右,而XC3S1500周围的温度也降低了4.2℃。可见,通过加入散热片有效地提高了系统的散热性能,达到了系统散热的目的。

结语

本文主要介绍了通用高性能实时信号处理系统的散热设计方法。在系统功耗估算的基础上,通过一些软件辅助设计来确定器件参数,给出系统核心部分的散热解决方案。在进行系统散热方案设计时,通过借助FLOPCB热分析软件辅助分析,结合系统自身的散热特点,给出了适合于本系统应用的参考散热方案。经过实际验证,该方案确实有较好的散热效果。
本文地址:https://www.eechina.com/thread-37845-1-1.html     【打印本页】

本站部分文章为转载或网友发布,目的在于传递和分享信息,并不代表本网赞同其观点和对其真实性负责;文章版权归原作者及原出处所有,如涉及作品内容、版权和其它问题,我们将根据著作权人的要求,第一时间更正或删除。
您需要登录后才可以发表评论 登录 | 立即注册

厂商推荐

相关在线工具

相关视频

关于我们  -  服务条款  -  使用指南  -  站点地图  -  友情链接  -  联系我们
电子工程网 © 版权所有   京ICP备16069177号 | 京公网安备11010502021702
快速回复 返回顶部 返回列表