看大师如何侃自动控制2

发布时间:2015-4-16 11:11    发布者:看门狗
关键词: 自动控制

有的时候,对同一个变量有不止一个控制手段。比如说,风冷器有风扇的转速可以调节,也有百叶窗的开度可以调节。风扇转速的效果快,控制精确;百叶窗开度的效果猛,不容易掌握,但有利于节能。所以,可以用风扇的快速响应来控制温度,但是用百叶窗开度来通过温度间接地缓慢地影响风扇的转速,使风扇转速回到最经济的设定。当然百叶窗开度的控制回路必须要比风扇转速的控制回路整定得慢得多,一般是缓慢的纯积分控制,否则两人要打架。由于这相当于控制风扇转速的“阀位”,工业上称其为阀位控制(valve position control)。这个阀位控制也可以变一变,风扇转速高于某一数值(比如80%的最大转速)时,把百叶窗开大一格,还是高就继续开大;风扇转速低于某一数值(比如低于20%最大转速)时,把百叶窗关小一格。这实际上是一个单向的积分作用,不同的地方有两点:
一、有两个设定值,由风扇转速是高还是低而定
二、积分作用只有在风扇转速在这两个“极限”的外面起作用,在里面时,百叶窗的开度不变
这样,风扇转速不必回到一个特定值,而是可以在一个范围内浮动。

另外一个,两个控制器“竞争”一个控制阀的情况是选择性控制(override control或selective control)。举个例子,锅炉的温度由燃料流量控制,温度高了,燃料流量就减下来,但是燃料流量低到燃料管路压力低于炉膛压力,那要出现危险的回火,所以,这时,燃料管路压力就要接管控制,而牺牲炉膛温度。换句话说,正常时候,炉膛温度控制起作用,燃料管路压力低于一定数值时,燃料管路压力控制器作用。在实施时,就是炉膛温度控制器和燃料管路压力控制器的输出都接到一个高选器,然后高选器的输出接到实际的燃料阀。这个概念很清楚,但是初次接触选择性控制的人,常常容易被高选还是低选搞糊涂,明明是压力太低,怎么是高选呢?其实,只要记住高选还是低选是从阀门这一头看的,和温度、压力的高度没有关系。如果“非常”变量超过界限了,你要阀门打开,那就是高选;你要阀门关闭,那就是低选。

PID从二、三十年到开始在工业界广泛应用,戏法变了几十年,也该换换花样了。PID说一千道一万,还是经典控制理论的产物。50-60年代时,什么都要现代派,建筑从经典的柱式、比例、细节的象征意义,变到“形式服从功能”的钢架玻璃盒子;汽车从用机器牵引的马车,变到流线型的钢铁的艺术;控制理论也要紧跟形势,要现代化。这不,美国佬卡尔曼隆重推出……现代控制理论。

都看过舞龙吧?一个张牙舞爪的龙头气咻咻地追逐着一个大绣球,龙身子扭来扭去,还时不时跳跃那么一两下。中国春节没有舞龙,就和洋人的圣诞节没有圣诞老人一样不可思议。想象一下,如果这是一条看不见的盲龙,只能通过一个人在龙尾巴后面指挥龙尾巴,然后再通过龙身体里的人一个接一个地传递控制指令,最后使龙头咬住绣球。这显然是一个动态系统,龙身越长,人越多,动态响应越迟缓。如果只看龙头的位置,只操控龙尾巴,而忽略龙身子的动态,那就是所谓的输入-输出系统。经典控制理论就是建立在输入-输出系统的基础上的。对于很多常见的应用,这就足够了。

但是卡尔曼不满足于“足够”。龙头当然要看住,龙尾巴当然要捏住,但龙身体为什么就要忽略呢?要是能够看住龙身体,甚至操纵龙身体,也就是说,不光要控制龙尾巴,控制指令还要直接传到龙身体里的那些人,那岂不更好?这就是状态空间的概念:将一个系统分解为输入、输出和状态。输出本身也是一个状态,或者是状态的一个组合。在数学上,卡尔曼的状态空间方法就是将一个高阶微分方程分解成一个联立的一阶微分方程组,这样可以使用很多线形代数的工具,在表述上也比较简洁、明了。
卡尔曼是一个数学家。数学家的想法就是和工程师不一样。工程师脑子里转的第一个念头就是“我怎么控制这劳什子?增益多少?控制器结构是什么样的?”数学家想的却是什么解的存在性、唯一性之类虚头八脑的东西。不过呢,这么说数学家也不公平。好多时候,工程师凭想象和“实干”,辛苦了半天,发现得出的结果完全不合情理,这时才想起那些“性”(不要想歪了啊,嘿嘿),原来那些存在性、唯一性什么的还是有用的。

还是回过来看这条龙。现在,龙头、龙尾巴、龙身体都要看,不光要看,还要直接操控龙头到龙尾的每一个人。但是,这龙不是想看就看得的,不是想舞就舞得的。说到“看”,直接能够测量/观测的状态在实际上是不多的,所谓看,实际上是估算。要是知道龙身体有多少节(就是有多少个人在下面撑着啦),龙身体的弹性/韧性有多少,那么捏住龙尾巴抖一抖,再看看龙头在哪里,是可以估算出龙身体每一节的位置的,这叫状态观测。那么,要是这龙中间有几位童子开小差,手不好好拉住,那再捏住龙尾巴乱抖也没用,这时系统中的部分状态就是不可观测的。如果你一声令下,部分童子充耳不闻,那这些状态就是不可控制的。卡尔曼从数学上推导出不可控和不可观的条件,在根本上解决了什么时候才不是瞎耽误工夫的问题。这是控制理论的一个重要里程碑。

再来看这条龙。如果要看这条龙整齐不整齐,排成纵列的容易看清楚;如果要清点人数,看每一个人的动作,排成横列的容易看清楚。但是不管怎么排,这条龙还是这条龙,只是看的角度不同。那时候中国人的春节舞龙还没有在美国的中国城里闹腾起来,不知道卡尔曼有没有看到过舞龙,反正他把数学上的线性变换和线性空间的理论搬到控制里面,从此,搞控制的人有了工具,一个系统横着看不顺眼的话,可以竖着看,因为不管怎么看,系统的本质是一样的。但是不同的角度有不同的用处,有的角度设计控制器容易一点,有的角度分析系统的稳定性容易一点,诸如此类,在控制理论里就叫这个那个“标准型”。这是控制理论的又一个里程碑。

观测状态的目的最终还是控制。只用输出的反馈叫输出反馈,经典控制理论里的反馈都可以归到输出反馈里,但是用状态进行反馈的就叫状态反馈了。输出反馈对常见系统已经很有效了,但状态反馈要猛得多。你想想,一个系统的所有状态都被牢牢地瞄住,所有状态都乖乖地听从调遣,那是何等的威风?台商的大奶们的最高境界呀。

尽管学控制的人都要学现代控制理论,但大多数人记得卡尔曼还是因为那个卡尔曼滤波器(Kalman Filter)。说它是滤波器,其实是一个状态观测器(state observer),用来从输入和输出“重构”系统的状态。这重构听着玄妙,其实不复杂。不是有系统的数学模型吗?只要模型精确,给它和真实系统一样的输入,它不就乖乖地把系统状态给计算出来了吗?且慢:微分方程的解不光由微分方程本身决定,还有一个初始条件,要是初始条件不对,微分方程的解的形式是正确的,但是数值永远差一拍。卡尔曼在系统模型的微分方程后再加了一个尾巴,把实际系统输出和模型计算的理论输出相比较,再乘上一个比例因子,形成一个实际上的状态反馈,把状态重构的偏差渐进地消除,解决了初始条件和其他的系统误差问题。卡尔曼滤波器最精妙之处,在于卡尔曼推导出一个系统的方法,可以考虑进测量噪声和系统本身的随机噪声,根据信噪比来决定上述比例因子的大小。这个构型其实不是卡尔曼的独创,隆伯格(Luenburg)也得出了类似的结构,但是从系统稳定性角度出发,来决定比例因子。同样的结构大量用于各种“预测-校正”模型结构,在工业上也得到很多应用,比如聚合反应器的分子重量分布可以用反应器的温度、进料配比、催化剂等来间接计算,但不够精确,也无法把林林总总的无法测量的干扰因素统统包括进数学模型里,这时用实验室测定的真实值来定期校正,就可以结合数学模型及时的特点和实验室结果精确的特点,满足实时控制的要求,这或许可以算静态的卡尔曼滤波器吧。卡尔曼滤波器最早的应用还是在雷达上。所谓边扫描边跟踪,就是用卡尔曼滤波器估计敌机的位置,再由雷达的间隙扫描结果来实际校正。实际应用中还有一个典型的问题:有时候,对同一个变量可以有好几个测量值可用,比如有的比较直接但不精确,有的是间接的估算,有很大的滞后但精确度高,这时可以用卡尔曼滤波器把不同来源的数据按不同的信噪比加权“整合”起来,也算是民用版的“传感器融合”(sensor fusion)吧。

除了卡尔曼滤波器外,卡尔曼的理论在实际中用得不多,但是卡尔曼的理论在理论上建立了一个出色的框架,对理解和研究控制问题有极大的作用。顺便说一句,卡尔曼的理论基本局限于线形系统,也就是说,十块大洋买一袋米,二十块大洋就买两袋米,都是成比例的。实际系统中有很多非线性的,两千块大洋还能买两百袋米,但两千万大洋就要看米仓有没有货了,市场涨不涨价了,不是钱越多,买的米越多,有一个非线性的问题。非线性的问题研究起来要复杂得多。实际系统还有其他特性,有的是所谓时变系统,像宇宙火箭,其质量随时间和燃料的消耗而变,系统特性当然也就变了。很多问题都是多变量的,像汽车转弯,不光方向盘是一个输入,油门和刹车也是输入变量。但是,状态空间的理论在数学表述上为线性、非线性、单变量、多变量、时变、时不变系统提供了一个统一的框架,这是卡尔曼最大的贡献。

前面说到,搞控制有三拨人:电工出身的,化工出身的,和应用数学出身的。在卡尔曼之前,电工出身的占主导地位,数学家们好在象牙塔里打转转,化工出身则还对控制理论懵里懵懂,还在“实干”呢。卡尔曼之后,一大批数学出身的人,利用对数学工具的熟悉,转攻控制理论。一时间,控制理论的数学化似乎成了“天下大势,顺我者昌,逆我者亡”了。在状态空间的框架下,多变量没有太多的问题好研究,于是最优化成为控制理论的新时尚。

对于一根给定的曲线,求一阶导数为零的点,就是这个曲线的极点;在对这一极点求二阶导数,大于零就是最小点,小于零就是最大点。这时牛顿老爷子就整明白的东东,现在高中或大一人人都学过的东西。但是动态系统是一个微分方程,对微分方程求一阶导数为零,就导致变分法和所谓欧拉方程。但这个东西用起来不方便。实际的最优控制不大直接使用变分。

俄罗斯是一个奇怪的地方。老毛子们要么蔫蔫的,要么疯狂的。俄罗斯的悲剧电影看得你也郁闷得想去自杀。但是老毛子要是搭错筋整出一个喜剧呢?那你要么跟着疯狂,要么被逼疯狂。就是这么一个地方,除了无数托尔斯泰、柴可夫斯基、普希金、屠格涅夫等文艺巨璧外,俄罗斯也盛产数学家,其中两个是庞特里亚京和河里学控制的人老惦记着的李亚普诺夫。

庞特里亚京的极大值原理听起来吓人,其实说白了很简单。看见那山吗?山顶就是最高点(切,这还用你说吗?);看见那山坡吗?要是在山腰划一道线,从山下往上爬,尽管山坡还在继续往上延伸,但是到线为止,不得逾越,那山腰上那道三八线就是最高点(切,这还用说?)。这就是庞特里亚京的极大值原理。当然啦,庞特里亚京是用精巧、深奥的数学语言表述的,要不然他在数学界里也别混了。不过呢,意思就是这么一个意思。

庞特里亚京极大值原理的一个典型应用就是所谓最速控制问题,或者叫时间最优控制(time optimal control)问题,简单地说,就是给定最大马力和最大刹车功率,怎么开汽车能够最快地从A点开到B点(什么转弯、上下坡、红绿灯,这种琐碎的事情也要拿来烦人?一点品味都没有!)。你可以用优美但繁琐的数学求证,或者用膝盖想想,最快的方法,就是一上来就加足马力,全速前进;然后在不到终点的某一地点,全力刹车,使慢下来的汽车在到达终点时正好停下来。这时最快的方法,不可能比这更快了。稍微发挥一点想象力,可以想象“梆”的一下,控制量的油门板一脚到底,再是“梆”的一下,刹车板一脚到底,控制任务就完成了。所以最速控制也叫“梆-梆”控制(bang bang control)。

最速控制在理论上是一个很有趣的问题,解法也是简洁、优美,但在实际中直接使用的例子实在是凤毛麟角,一般都是开始时用“梆-梆”,或者匀速上升到最大控制,以缓和控制的冲击力;到终点附近时,改用PID作闭环微调,以克服“梆-梆”的系统模型误差十分敏感的缺点。电梯控制就是这样一个例子。从一楼到四楼,电动机很快匀速上升到最高转速,一过三楼,电动机就匀速下降到较低的转速,然后根据电梯实际位置和楼面之差,有控制地减速,直至停下来。要是控制参数调得好的话,一下子就稳稳当当地停下来;要是调的不够好,会在停下来之前上下晃荡几下。

小时候喜欢看杂书,没什么东西看,不正在*****嘛?不过看进去了两个“化”:机械化和自动化。打小就没有弄明白,这机械化和自动化到底有什么差别,机器不是自己就会动的吗?长大了,总算稍微明白了一点,这机械化是力气活,用机器代替人的体力劳动,但还是要人管着的,不然机器是不知道该干什么不该干什么的;这自动化嘛,就是代替人的重复脑力劳动,是用来管机器的。也就是说,自动化是管着机械化的,或者说学自动化的是管着学机械的……啊,不对,不对,哪是哪啊!

有人考证古代就有自动化的实例,但现代意义上的自动控制开始于瓦特的蒸汽机。据说纽考门比瓦特先发明蒸汽机,但是蒸汽机的转速控制问题没有解决,弄不好转速飞升,机器损坏不说,还可能说大事故。瓦特在蒸汽机的转轴上安了一个小棍,棍的一端和放汽阀连着,放气阀松开来就关闭,转速增加;按下去阀就打开,转速降低;棍的另一端是一个小重锤,棍中间某个地方通过支点和转轴连接。转轴转起来的时候,小棍由于离心力的缘故挥起来。转速太高了,小棍挥会挥得很高,放汽阀就被按下去打开,转速下降;转速太低了,小棍挥不起来,放汽阀就被松开来关闭,转速回升。这样,蒸汽机可以自动保持稳定的转速,即保证安全,又方便使用。也就是因为这个小小的转速调节器,瓦特的名字和工业革命连在一起,而纽考门的名字就要到历史书里去找了。

类似的例子在机械系统里很多,家居必备的抽水马桶是另一个例子。放水冲刷后,水箱里水位降低,浮子随水面下降,进水阀打开。随着水位的升高,进水阀逐渐关闭,直到水位达到规定高度,进水阀完全关闭,水箱的水正好准备下一次使用。这是一个非常简单但非常巧妙的水位控制系统,是一个经典的设计,但不容易用经典的控制理论来分析,不过这是题外话了。

这些机械系统设计巧妙,工作可靠,实在是巧夺天工。但是在实用中,如果每次都需要这样的创造性思维,那太累,最好有一个系统的方法,可以解决“所有”的自动控制问题,这就是控制理论的由来。

从小大人就教我们,走路要看路。为什么呢?要是不看着路,走路走歪了也不知道,结果就是东撞西撞的。要是看着路呢?走歪了,马上就看到,赶紧调整脚步,走回到正道上来。这里有自动控制里的第一个重要概念:反馈(feedback)。

反馈是一个过程:
1、设定目标,对小朋友走路的例子来说,就是前进的路线。
2、测量状态,小朋友的眼睛看着路,就是在测量自己的前进方向。
3、将测量到的状态和设定的目标比较,把眼睛看到的前进方向和心里想的前进方向作比较,判断前进方向是否正确;如果不正确,相差有多少。
4、调整行动,在心里根据实际前进方向和设定目标的偏差,决定调整的量。
5、实际执行,也就是实际挪动脚步,重回正确的前进方向。

在整个走路的过程中,这个反馈过程周而复始,不断进行,这样,小朋友就不会走得东倒西歪了。但是,这里有一个问题:如果所有的事情都是在瞬时里同时发生的,那这个反馈过程就无法工作。要使反馈工作,一定要有一定的反应时间。还好,世上之事,都有一个过程,这就为反馈赢得了所需要的时间。

    小时候,妈妈在锅里蒸东西,蒸好了,从锅里拿出来总是一个麻烦,需要抹布什么的垫着,免得烫手。

但是碗和锅的间隙不大,连手带抹布伸进去颇麻烦,我常常不知天高地厚,自告奋勇地徒手把热的碗拿出来。只要动作快,手起碗落,可以不烫手。当然喽,要是捧着热碗再东晃晃,西荡荡,那手上感觉的温度最终会和热碗一样,肯定要把手心、手指烫熟不可的。在从接触碗到皮肤温度和碗表面一样,这里面有一个逐渐升温的过程,这就是动态过程(dynamic process)。这里面有两个东西要注意:一个是升温的过程有多快,另一个是最终的温度可以升到多少。要是知道了这两个参数,同时知道自己的手可以耐受多少温度,理论上可以计算出热的碗在手里可以停留多少时间而不至于烫手。

反馈过程也叫闭环(closed loop)过程。既然有闭环,那就有开环(open loop)。开环就是没有反馈的控制过程,设定一个控制作用,然后就执行,不根据实际测量值进行校正。开环控制只有对简单的过程有效,比如洗衣机和烘干机按定时控制,到底衣服洗得怎么样,烘得干不干,完全取决于开始时的设定。对于洗衣机、烘干机这样的问题,多设一点时间就是了,稍微浪费一点,但可以保证效果。对于空调机,就不能不顾房间温度,简单地设一个开10分钟、关5分钟的循环,而应该根据实际温度作闭环控制,否则房间里的温度天知道到底会达到多少。记得80年代时,报告文学很流行。徐迟写了一个《哥德巴赫猜想》,于是全国人民都争当科学家。小说家也争着写科学家,成就太小不行,所以来一个语不惊人死不休,某大家写了一个《无反馈快速跟踪》。那时正在大学啃砖头,对这个科学新发现大感兴趣,从头看到尾,也没有看明白到底是怎么无反馈快速跟踪的。现在想想,小说就是小说,不过这无良作家也太扯,无反馈还要跟踪,不看着目标,不看着自己跑哪了,这跟的什么踪啊,这和永动机差不多了,怎么不挑一个好一点的题目,冷聚变什么的,至少在理论上还是可能的。题外话了。

    在数学上,动态过程用微分方程描述,反馈过程就是在描述动态过程的微分方程的输入项和输出项之间建立一个关联,这样改变了微分方程本来的性质。自动控制就是在这个反馈和动态过程里做文章的。

房间内的空调是一个简单的控制问题。不过这只是指单一房间,整个高层大楼所有房间的中央空调问题实际上是一个相当复杂的问题,不在这里讨论的范围。夏天了,室内温度设在28度,实际温度高于28度了,空调机启动致冷,把房间的温度降下来;实际温度低于28度了,空调机关闭,让房间温度受环境气温自然升上去。通过这样简单的开关控制,室内温度应该就控制在28度。不过这里有一个问题,如果温度高于28度一点点,空调机就启动;低于28度一点点,空调机就关闭;那如果温度传感器和空调机的开关足够灵敏的话,空调机的开关频率可以无穷高,空调机不断地开开关关,要发神经病了,这对机器不好,在实际上也没有必要。解决的办法是设立一个“死区”(dead band),温度高于29度时开机,低于27度时关机。注意不要搞反了,否则控制单元要发神经了。有了一个死区后,室内温度不再可能严格控制在28度,而是在27到29度之间“晃荡”。如果环境温度一定,空调机的制冷量一定,室内的升温/降温动态模型已知,可以计算温度“晃荡”的周期。不过既然是讲故事,我们就不去费那个事了。

这种开关控制看起来“土”,其实好处不少。对于大部分过程来说,开关控制的精度不高但可以保证稳定,或者说系统输出是“有界”的,也就是说实际测量值一定会被限制在一定的范围,而不可能无限制地发散出去。这种稳定性和一般控制理论里强调的所谓渐进稳定性不同,而是所谓BIBO稳定性,前者要求输出最终趋向设定值,后者只要求在有界的输入作用下输出是有界的,BIBO指bounded input bounded output。

对于简单的精度要求不高的过程,这种开关控制(或者称继电器控制,relay control,因为最早这种控制方式是用继电器或电磁开关来实现的)就足够了。但是很多时候,这种“毛估估”的控制满足不了要求。汽车在高速公路上行驶,速度设在定速巡航控制,速度飘下去几公里,心里觉得吃亏了,但要是飘上去几公里,被警察抓下来吃一个罚单,这算谁的?

开关控制是不连续控制,控制作用一加就是“全剂量”的,一减也是“全剂量”的,没有中间的过渡。如果空调机的制冷量有三个设定,:小、中、大,根据室温和设定的差别来决定到底是用小还是中还是大,那室温的控制精度就可以大大提高,换句话说,温度的“晃荡”幅度将大幅度减小。那么,如果空调机有更多的设定,从小小到小中到……到大大,那控制精度是不是更高呢?是的。既然如此,何不用无级可调的空调机呢?那岂不可以更精确地控制室温了吗?是的。无级可调或连续可调的空调机可以精确控制温度,但开关控制不能再用了。家用空调机中,连续可调的不占多数,但冲热水淋浴是一个典型的连续控制问题,因为水龙头可以连续调节水的流量。冲淋浴时,假定冷水龙头不变,只调节热水。那温度高了,热水关小一点;温度低了,热水开打一点。换句话说,控制作用应该向减少控制偏差的方向变化,也就是所谓负负反馈。控制方向对了,还有一个控制量的问题。温度高了1度,热水该关小多少呢?

经验告诉我们,根据具体的龙头和水压,温度高1度,热水需要关小一定的量,比如说,关小一格。换句话说,控制量和控制偏差成比例关系,这就是经典的比例控制规律:控制量=比例控制增益*控制偏差,偏差越大,控制量越大。控制偏差就是实际测量值和设定值或目标值之差。在比例控制规律下,偏差反向,控制量也反向。也就是说,如果淋浴水温要求为40度,实际水温高于40度时,热水龙头向关闭的方向变化;实际水温低于40度时,热水龙头向开启的方向变化。但是比例控制规律并不能保证水温能够精确达到40度。在实际生活中,人们这时对热水龙头作微调,只要水温还不合适,就一点一点地调节,直到水温合适为止。这种只要控制偏差不消失就渐进微调的控制规律,在控制里叫积分控制规律,因为控制量和控制偏差在时间上的累积成正比,其比例因子就称为积分控制增益。工业上常用积分控制增益的倒数,称其为积分时间常数,其物理意义是偏差恒定时,控制量加倍所需的时间。这里要注意的是,控制偏差有正有负,全看实际测量值是大于还是小于设定值,所以只要控制系统是稳定的,也就是实际测量值最终会稳定在设定值上,控制偏差的累积不会是无穷大的。这里再啰嗦一遍,积分控制的基本作用是消除控制偏差的余差(也叫残差)。

比例和积分控制规律可以应付很大一类控制问题,但不是没有改进余地的。如果水管水温快速变化,人们会根据水温的变化调节热水龙头:水温升高,热水龙头向关闭方向变化,升温越快,开启越多;水温降低,热水龙头向开启方向变化,降温越快,关闭越多。这就是所谓的微分控制规律,因为控制量和实际测量值的变化率成正比,其比例因子就称为比例控制增益,工业上也称微分时间常数。微分时间常数没有太特定的物理意义,只是积分叫时间常数,微分也跟着叫了。微分控制的重点不在实际测量值的具体数值,而在其变化方向和变化速度。微分控制在理论上和实用中有很多优越性,但局限也是明显的。

如果测量信号不是很“干净”,时不时有那么一点不大不小的“毛刺”或扰动,微分控制就会被这些风吹草动搞得方寸大乱,产生很多不必要甚至错误的控制信号。所以工业上对微分控制的使用是很谨慎的。

比例-积分-微分控制规律是工业上最常用的控制规律。人们一般根据比例-积分-微分的英文缩写,将其简称为PID控制。即使在更为先进的控制规律广泛应用的今天,各种形式的PID控制仍然在所有控制回路中占85%以上。

在PID控制中,积分控制的特点是:只要还有余差(即残余的控制偏差)存在,积分控制就按部就班地逐渐增加控制作用,直到余差消失。所以积分的效果比较缓慢,除特殊情况外,作为基本控制作用,缓不救急。微分控制的特点是:尽管实际测量值还比设定值低,但其快速上扬的冲势需要及早加以抑制,否则,等到实际值超过设定值再作反应就晚了,这就是微分控制施展身手的地方了。作为基本控制使用,微分控制只看趋势,不看具体数值所在,所以最理想的情况也就是把实际值稳定下来,但稳定在什么地方就要看你的运气了,所以微分控制也不能作为基本控制作用。比例控制没有这些问题,比例控制的反应快,稳定性好,是最基本的控制作用,是“皮”,积分、微分控制是对比例控制起增强作用的,极少单独使用,所以是“毛”。在实际使用中比例和积分一般一起使用,比例承担主要的控制作用,积分帮助消除余差。微分只有在被控对象反应迟缓,需要在开始有所反应时,及早补偿,才予以采用。只用比例和微分的情况很少见。


本文地址:https://www.eechina.com/thread-148013-1-1.html     【打印本页】

本站部分文章为转载或网友发布,目的在于传递和分享信息,并不代表本网赞同其观点和对其真实性负责;文章版权归原作者及原出处所有,如涉及作品内容、版权和其它问题,我们将根据著作权人的要求,第一时间更正或删除。
CHL1231 发表于 2015-5-10 17:47:56
有重复内容
您需要登录后才可以发表评论 登录 | 立即注册

厂商推荐

关于我们  -  服务条款  -  使用指南  -  站点地图  -  友情链接  -  联系我们
电子工程网 © 版权所有   京ICP备16069177号 | 京公网安备11010502021702
快速回复 返回顶部 返回列表