ludi的个人空间 https://www.eechina.com/space-uid-138953.html [收藏] [复制] [分享] [RSS]

博客

主流协议族TCP/IP协议,对此你了解多少

已有 650 次阅读2017-10-12 09:59

现在Internet(因特网)使用的主流协议族是TCP/IP协议族,它是一个分层、多协议的通信体系。简单说一下TCP/IP协议族体系结构以及主要协议,这些你可能不知道的知识。

1.1 TCP/IP协议族体系结构以及主要协议

TCP/IP协议族是一个四层协议系统,自底而上分别是数据链路层、网络层、传输层和应用层。每一层完成不同的功能,且通过若干协议来实现,上层协议使用下层协议提供的服务,如图1-1所示。

1.1.1 数据链路层

数据链路层实现了网卡接口的网络驱动程序,以处理数据在物理媒介(比如以太网、令牌环等)上的传输。不同的物理网络具有不同的电气特性,网络驱动程序隐藏了这些细节,为上层协议提供一个统一的接口。

数据链路层两个常用的协议是ARP协议(Address Resolve Protocol,地址解析协议)和RARP协议(Reverse Address Resolve Protocol,逆地址解析协议)。它们实现了IP地址和机器物理地址(通常是MAC地址,以太网、令牌环和802.11无线网络都使用MAC地址)之间的相互转换。

网络层使用IP地址寻址一台机器,而数据链路层使用物理地址寻址一台机器,因此网络层必须先将目标机器的IP地址转化成其物理地址,才能使用数据链路层提供的服务,这就是ARP协议的用途。RARP协议仅用于网络上的某些无盘工作站。因为缺乏存储设备,无盘工作站无法记住自己的IP地址,但它们可以利用网卡上的物理地址来向网络管理者(服务器或网络管理软件)查询自身的IP地址。运行RARP服务的网络管理者通常存有该网络上所有机器的物理地址到IP地址的映射。

1.1.2 网络层

网络层实现数据包的选路和转发。WANWide Area Network,广域网)通常使用众多分级的路由器来连接分散的主机或LANLocal Area Network,局域网),因此,通信的两台主机一般不是直接相连的,而是通过多个中间节点(路由器)连接的。网络层的任务就是选择这些中间节点,以确定两台主机之间的通信路径。同时,网络层对上层协议隐藏了网络拓扑连接的细节,使得在传输层和网络应用程序看来,通信的双方是直接相连的。

网络层最核心的协议是IP协议(Internet Protocol,因特网协议)。IP协议根据数据包的目的IP地址来决定如何投递它。如果数据包不能直接发送给目标主机,那么IP协议就为它寻找一个合适的下一跳(next hop)路由器,并将数据包交付给该路由器来转发。多次重复这一过程,数据包最终到达目标主机,或者由于发送失败而被丢弃。可见,IP协议使用逐跳(hop by hop)的方式确定通信路径。

网络层另外一个重要的协议是ICMP协议(Internet Control Message Protocol,因特网控制报文协议)。它是IP协议的重要补充,主要用于检测网络连接。ICMP协议使用的报文格式如图1-2所示。

 

1-2中,8位类型字段用于区分报文类型。它将ICMP报文分为两大类:一类是差错报文,这类报文主要用来回应网络错误,比如目标不可到达(类型值为3)和重定向(类型值为5);另一类是查询报文,这类报文用来查询网络信息,比如ping程序就是使用ICMP报文查看目标是否可到达(类型值为8)的。有的ICMP报文还使用8位代码字段来进一步细分不同的条件。比如重定向报文使用代码值0表示对网络重定向,代码值1表示对主机重定向。ICMP报文使用16位校验和字段对整个报文(包括头部和内容部分)进行循环冗余校验(Cyclic Redundancy Check,CRC),以检验报文在传输过程中是否损坏。不同的ICMP报文类型具有不同的正文内容。我们将在第2章详细讨论主机重定向报文,其他ICMP报文格式请参考ICMP协议的标准文档RFC 792

需要指出的是,ICMP协议并非严格意义上的网络层协议,因为它使用处于同一层的IP协议提供的服务(一般来说,上层协议使用下层协议提供的服务)。

1.1.3 传输层

传输层为两台主机上的应用程序提供端到端(end to end)的通信。与网络层使用的逐跳通信方式不同,传输层只关心通信的起始端和目的端,而不在乎数据包的中转过程。图1-3展示了传输层和网络层的这种区别。

 

1-3中,垂直的实线箭头表示TCP/IP协议族各层之间的实体通信(数据包确实是沿着这些线路传递的),而水平的虚线箭头表示逻辑通信线路。该图中还附带描述了不同物理网络的连接方法。可见,数据链路层(驱动程序)封装了物理网络的电气细节;网络层封装了网络连接的细节;传输层则为应用程序封装了一条端到端的逻辑通信链路,它负责数据的收发、链路的超时重连等。

传输层协议主要有三个:TCP协议、UDP协议和SCTP协议。

TCP协议(Transmission Control Protocol,传输控制协议)为应用层提供可靠的、面向连接的和基于流(stream)的服务。TCP协议使用超时重传、数据确认等方式来确保数据包被正确地发送至目的端,因此TCP服务是可靠的。使用TCP协议通信的双方必须先建立TCP连接,并在内核中为该连接维持一些必要的数据结构,比如连接的状态、读写缓冲区,以及诸多定时器等。当通信结束时,双方必须关闭连接以释放这些内核数据。TCP服务是基于流的。基于流的数据没有边界(长度)限制,它源源不断地从通信的一端流入另一端。发送端可以逐个字节地向数据流中写入数据,接收端也可以逐个字节地将它们读出。

UDP协议(User Datagram Protocol,用户数据报协议)则与TCP协议完全相反,它为应用层提供不可靠、无连接和基于数据报的服务。不可靠意味着UDP协议无法保证数据从发送端正确地传送到目的端。如果数据在中途丢失,或者目的端通过数据校验发现数据错误而将其丢弃,则UDP协议只是简单地通知应用程序发送失败。因此,使用UDP协议的应用程序通常要自己处理数据确认、超时重传等逻辑。UDP协议是无连接的,即通信双方不保持一个长久的联系,因此应用程序每次发送数据都要明确指定接收端的地址(IP地址等信息)。基于数据报的服务,是相对基于流的服务而言的。每个UDP数据报都有一个长度,接收端必须以该长度为最小单位将其所有内容一次性读出,否则数据将被截断。

SCTP协议(Stream Control Transmission Protocol,流控制传输协议)是一种相对较新的传输层协议,它是为了在因特网上传输电话信号而设计的。本书不讨论SCTP协议,感兴趣的读者可参考其标准文档RFC 2960

1.1.4 应用层

应用层负责处理应用程序的逻辑。数据链路层、网络层和传输层负责处理网络通信细节,这部分必须既稳定又高效,因此它们都在内核空间中实现,如图1-1所示。而应用层则在用户空间实现,因为它负责处理众多逻辑,比如文件传输、名称示。而应用层则在用户空间实现,因为它负责处理众多逻辑,比如文件传输、名称查询和网络管理等。如果应用层也在内核中实现,则会使内核变得非常庞大。当然,也有少数服务器程序是在内核中实现的,这样代码就无须在用户空间和内核空间来回切换(主要是数据的复制),极大地提高了工作效率。不过这种代码实现起来较复杂,不够灵活,且不便于移植。本书只讨论用户空间的网络编程。

应用层协议很多,图1-1仅列举了其中的几个:

ping是应用程序,而不是协议,前面说过它利用ICMP报文检测网络连接,是调试网络环境的必备工具。

telnet协议是一种远程登录协议,它使我们能在本地完成远程任务,本书后续章节将会多次使用telnet客户端登录到其他服务上。

OSPFOpen Shortest Path First,开放最短路径优先)协议是一种动态路由更新协议,用于路由器之间的通信,以告知对方各自的路由信息。

DNSDomain Name Service,域名服务)协议提供机器域名到IP地址的转换,我们将在后面简要介绍DNS协议。

应用层协议(或程序)可能跳过传输层直接使用网络层提供的服务,比如ping程序和OSPF协议。应用层协议(或程序)通常既可以使用TCP服务,又可以使用UDP服务,比如DNS协议。我们可以通过/etc/services文件查看所有知名的应用层协议,以及它们都能使用哪些传输层服务。

 


路过

鸡蛋

鲜花

握手

雷人

评论 (0 个评论)

facelist

您需要登录后才可以评论 登录 | 立即注册

关于我们  -  服务条款  -  使用指南  -  站点地图  -  友情链接  -  联系我们
电子工程网 © 版权所有   京ICP备16069177号 | 京公网安备11010502021702
返回顶部