Modbus技术在变频调速系统上的应用

发布时间:2012-3-13 23:08    发布者:1770309616
关键词: Modbus技术 , 变频调速系统
1 引言
  预缩机是印染行业中织物后整理的最后一道工序,它是将织物经过机械物理预缩(橡胶毯)的方法,使其预缩率降低,手感改善。基本配置由四个单元组成:给湿单元、橡胶毯预缩单元、呢毯整理单元和出布单元。给湿单元完成预缩前的给湿准备,以使织物拥有一定的含湿量,便于织物预缩。其拖动部分为一只糙皮辊。由一个2.2kw电机拖动。橡胶毯预缩单元是本机的核心,主要是通过橡胶毯挤压以使织物经向产生收缩。挤压由一个φ616mm的辊筒和另一个辊筒的相对运动完成,拖动由一个15kw的电机完成。呢毯整理单元主要用以烘干织物和改善手感,由一个3kw的电机拖动一个φ2000mm的大滚筒完成。出布单元由一个1.5kw的电机拖动摆布斗完成。
  其工艺流程:进布单元→橡胶毯预缩单元→呢毯整理单元→落布单元。
2 系统配置方案
  在本方案中,触摸屏采用日本proface公司生产的gp系列,plc采用西门子公司s7-226系列,变频器采用丹佛斯vlt2900系列,由于该系列变频器内已经内置了rs485接口且支持modbus协议,故这使该系统性价比非常高。s7-226系列的cpu内置了两个通信口,这两个通信口都为rs485接口,均可在三种方式下工作,即ppi方式、mpi方式及自由通信口方式。ppi是point-to-point的缩写,即点对点方式,是西门子公司专为s7-200系列开发的一个通信协议,在本案中,笔者可把其中的一个通信口设置为该方式,用以连接hmi,进而做人机交换信息用。而第二个通信口我们把它设置成自由口通信方式。自由口通信方式是s7-200系列非常有特色的功能。在该方式下,依据和他通信的其他设备的公开的通信协议来编程s7-200的通信。笔者在本方案中用它连接变频器以实现它们之间的相互通信。相关系统框图如图1所示(基于本文阐述的重点,其它的如变频器和电机组成的自反馈系统不再画出和赘述)。
q1.jpg

3 自由口通信和modbus协议
  自由口通信和modbus协议在s7-226和丹佛斯vlt2900系列变频器的应用过程如下:
  3.1通讯协议及其在plc和变频器上的基本设置
  既然双方控制器要建立通信,它们必将共同遵循一定的规约,这即称之为协议。本系统中,plc建立的通讯规约将依从于变频器的规约,即modbus协议,这是因为s7-200支持自由口通信模式。
  (1)自由口通信模式
  cpu串行通信口可由用户程序控制,这种操作模式称作自由口通信模式。在该模式下,用户程序可以使用接受中断、发送中断、发送指令(xmt)和接受指令(rcv)来进行通信操作。利用该模式,plc可以和任意第三方串口进行通信。smb30(用于端口0)和smb130(用于端口1)用于选择波特率、奇偶校验、数据位数和通信协议。
  (2)modbus通信协议
  modbus通信是一种被用于在智能设备间建立主从方式的通信,它可以通过如rs232c、rs485等多种传输方式进行传播。它分为两种串行传输方式:ascii和rtu(remoteterminalunit,远程测控中断)。它们定义了数据如何打包、解码的不同方式。丹佛斯vlt2900系列支持的是rtu方式,其格式是:
          q2.jpg
  其中奇偶校验和停止位可以是0,即可以没有。
  modbus由一个主站(plc)和最多31个从站(本系统中为4个)组成。主站负责发送指令,从站则是响应指令。在某一时刻,只能有一个从站能和主站进行连接。
  丹佛斯vlt2900系列变频器内置了rs485物理接口,且同时支持modbus协议。其相关的参数如站地址、波特率、校验等在561#、500#、570#及501#参数组内设置。
  3.2 plc和变频器通信的信号格式
  (1)丹佛斯vlt2900系列变频器支持标准的modbus-rtu信号,其格式如下:
          q3.jpg
  驱动器地址:本文为变频器地址。值为0~32,若设定为0,即为广播方式,则从plc同时向所有的变频器传送指令信号,而变频器不反馈响应信号。
  功能码:丹佛斯vlt2900系列支持以下几种功能码(16进制)。
          q4.jpg
  数据:存储寄存器地址和数据组合构成一组数据。因指令的内容不同数据长度不同。
  故障检查:对于rtu方式,一般采用crc-16的方式进行,后面将做进一步的说明。
  (2)丹佛斯vlt2900系列变频器编址
  既然plc与变频器通信时操作对象是存储器,故变频器内部必须有plc能识别的存储器地址相对应。变频器生产厂家不同会导致其编址方法的不同。丹佛斯vlt2900系列变频器编址和你在其说明书上看到的参数号是遵从一等式的,即
  参数地址(hex)=[(参数号×10)-1](dec)。
  (3)modbus信号举例
  通过重写控制字与参考值的方式,启动电机并使之运行在50%的转速下:
  指令信号:[01] [0f] [00] [00] [00] [20] [04] [7c] [04] [00] [20] [9d][01]
  该指令中:
  [01]为驱动器地址
  [0f]为功能码,是指本命令为写多个位存储器指令;
  [00] [00]指出将要写入数据的起始地址为位存储器的首地址。
  [00][20]为写入长度,20hx=32dec位数据。
  [04]为要写入位的总字节数为4个。
  [7c] [04] 047c是启动电机的控制字内容,在实际传输中为低位前置。
  [00] [20]为电机运行的参考值,在实际传输中低位前置。
  [9d] [01]为计算出的crc-16值
  正常时其响应信号应为:
  [01] [0f] [00] [00] [00] [20] [54] [13]
  按频率指令60.0hz传送到1#变频器(地址为01),
  指令信号:[01][06][04][0f][00][3c][b8][e8]
  正常时响应信号为: [01][06][04][0f][00][3c][b8][e8]
  3.3信号的发送和接受指令
  当信号格式被确定后,笔者所要做的是从plc如何把它们发送出去和如何接收变频器的响应信号了,在自由口模式当中,信号可以用xmt命令发送,用rcv命令接收,另外,还可以利用smb2(接收缓冲字节)配合其它如mov指令等来实现字符的接收。在s7-200系统中,设计了诸如发送完成、接收完成等中断事件,则将很方便的通过它们来控制整个程序的运行。
4 plc程序的设计
  (1)数学模型
  由于各个单元间是采用线性比例同步的,所以构建其数学模型非常简单,只要使某单元的转速和其相邻上一级单元遵循数学公式v1=k×v2即可。为了调节两单元之间的张力,只需调节两单元间比例k即可。这里需提醒注意的是:某一单元的转速必须以上一级为基础进行比例调节,这样才不至于在调节单元的速度时,影响其它单元间的张力。
  (2)程序框图及其说明
  程序框图如图2所示。
q5.jpg

  (3)程序结构说明
  程序结构包括主程序、初始化子程序、停车子程序、开车子程序、比例设定子程序和速度计算子程序。其中与通信有关的程序有crc-16校验程序、发送中断程序、接收中断程序等。下面主要介绍一下crc-16校验程序。
  crc是 “cyclical rendundancy check” (循环冗余码校验)的英文简称。
  crc码为2个字节,16位的二进制值。故又叫crc-16。由发送设备计算crc值,并把它附到信息中去。接收设备在接收信息过程中再次计算crc值并与crc的实际值进行比较,若二者不一致,亦产生一个错误,校验开始时,把16位寄存器的各位都置为“1”,然后把信息中的相邻2个8位字节数据放到当前寄存器中处理,只有每个字符的8位数据用于crc处理。起始位,停止位和校验位不参与crc计算。
  crc校验时,每个8位数据与该寄存器的低位内容进行异或运算,然后向最低有效位(lsb)方向移位,同时用零填入最高有效位(msb)后,再对lsb检查,若lsb=1,则寄存器与生成多项式(16#a001)异或,若lsb=0,不作异或运算。
  重复上述处理过程,直至移位8次,最后一次(第8次)移位后,下一个8位字节数据与寄存器的当前值异或,再重复上述过程。全部处理完信息中的数据字节后,最终得到的寄存器值为crc值。
  在程序编制时,可以使用for/next指令,并使用一次嵌套。在发送时,crc值附加到信息时,低位在先,高位在后。
5 结束语
  通过实践证明,该方案使得系统布线变得简单,使系统的抗干扰性明显增强。为该设备的系统升级作出了应有的贡献。


……艾默生变频器及PLC在恒液位控制中的应用

1 引言
  包钢带钢厂璇流井水系统是为轧线供生产用水,整个水系统是循环运行的。为保证璇流井内水位保证基本平衡,通过5#泵(110kw)将水池内循环水再抽到外面,防止水溢出。由于原有系统采用软启动器启动,不能调节转速,水位的控制依靠人为值守,通过开阀和关阀来控制。如无人值守,在低液位会造成水泵抽真空而损伤泵体(气蚀);高液位则会淹没水泵房造成停电事故。为此,我们设计变频恒液位控制系统,液位检测采用超声波液位器(百特公司产品),通过变频器内部pid构成液位闭环,实现液位的自动恒定控制。
2 变频恒液位控制系统构成
  系统水泵电机为110kw,4极,转速1480r/min。设计采用ev2000-4t1100p系列通用变频器作为水泵电机控制核心。液位检测采用百特工控公司生产fbson-y-05-n系列超声波物位检测仪,供电电源为ac220v,一体式安装。量程最大可达到5m,实际检测水位最高1.85m。系统原理图如图1所示。
e1.jpg
  采用一台ec20-1006bra作简单的继电连锁,除了和旧系统进行连锁(互锁),还有变频器的简单启动和停止及报警。本系统还另外装有一台ec20-1006bra,通过串口与一台数传电台相通讯(modbus),来实现和另外一个水泵房(净环泵房)实现连锁。当璇流井有高液位报警时,通过plc及数传电台传送到净环泵房,由操作人员确定水泵的启动和停止(由于二者距离太远,且不适合电缆敷设,所以采用无线数传的方式)。
  其中璇流井内plc设置为主站,净环内plc为从站。数传电台采用深圳科立讯生产的pt6080无线数传电台,它是利用先进的单片机技术,无线射频技术,数字处理技术设计的功率较大,体积较小的模块式半双工数传电台,采用smt新工艺,选用高质量的元器件。抗干扰能力强,精致坚固,结构紧凑,安装方便。数话兼容,数传可优先。rs-232、rs-485及ttl多种接口可供选择,适应面宽。原理图如图2和图3所示。
e2.jpg
3 变频恒液位控制参数及工作原理
  3.1 ev2000通用技术规格
  ev2000通用技术规格如附表所示。
e3.jpg
  3.2 实现璇流井内恒液位控制
  此时,笔者采用给定电位计作为液位给定,反馈采用超声波液位仪(变送输出4-20ma)。
  通过变频器内部的pid调节器做压力闭环调节。变频器参数设置如下:
  fp.01=0 参数写保护选择,全部参数允许改写
  f0.00=3 给定为vci模拟给定
  f0.03=1 端子运行
  f0.04=0 转向为正向
  f0.08=1 负载为风机类
  f0.10=15 加速时间
  f0.11=15 减速时间
  f0.14=1 v/f曲线设定(2次幂,泵类负载特性)
  f5.00=1 闭环运行有效
  f5.01=1 给定为vci
  f5.02=1 反馈为cci(注意要做调线改动),超声波输出
  f5.09=20 最小给定量对应反馈(4ma ,相对于20ma为20%)
  f5.12=0.10 比例增益
  f5.13=0.05 积分时间
  fh.00=4 4极电机
  fh.01=110 功率110kw
  变频器内部pid控制框图如图4所示。
e4.jpg
  3.3超声波参数设置
  (1) 测量模式选择:距离测量,如图5所示。

  (2) 测量范围:0-185cm。 e5.jpg
  (3) 响应速度选择:慢速。
  (4) 安全物位:保持。
  超声波工作电压220vac,输出信号为4~20ma。
  为可靠检测液位,使用超声波变送器必须使其响应速度较慢。这是因为过快的响应速度,会造成外界干扰信号的扰动,使液位信号变化太快,影响了正常的设备运行。降低速度,可以使信号综合平均后输出实际稳定电流信号。
4 结束语
  经过现场一段时间的运行,变频恒液位运行效果非常好。当用电位计设定一个液位高度后,变频器以恒液位控制方式运行。当液位设定为70cm,实际检测璇流井内的液位基本在60~80cm之间恒定。当液位低于70cm,变频器频率降低,直到最后停止在最低运行频率(20hz)。这是因为如果变频器运行频率过低,水泵的扬程不够,电机功率白白损耗掉,不利于节能运行。设置最低运行频率,能够使水泵扬程达到要求(璇流井内循环水不会造成在最低的运行功率下导致液位过低而水泵抽真空)。变频器的频率一般在生产的时候达到35~45hz左右,这样的节能率是非常高的(40%左右),而且恒液位控制大大的降低了操作人员的劳动强度。当由于某种原因造成液位过高时,通过ec20plc和数传电台还可以为上级泵站提供信号,实现泵站水系统的连锁控制,保证了正常的生产供水要求,同时也大大地节约了电能(35%以上),为包钢节能降耗工程作了一个典范工程。


本文地址:https://www.eechina.com/thread-87214-1-1.html     【打印本页】

本站部分文章为转载或网友发布,目的在于传递和分享信息,并不代表本网赞同其观点和对其真实性负责;文章版权归原作者及原出处所有,如涉及作品内容、版权和其它问题,我们将根据著作权人的要求,第一时间更正或删除。
1770309616 发表于 2012-3-13 23:40:08
浅谈变频控制柜设计安装规范

1 引言
  进入21世纪来,国内变频调速技术得到了飞速发展,已广泛应用于国民经济的各个行业,促进了节能降耗,极大的提高了我国工业电气传动水平。但随着变频器的推广与应用,需要注意和解决的问题就慢慢浮出水面。例如变频控制柜如何设计、安装、测试等,面对的一系列问题与要求,是许多变频器制造商、代理商、电气工程师、直接用户想急需了解或做得不够完善的问题。本文我们将重点浅谈、分析、处理这些问题。
2 变频控制柜设计前的要求
  变频控制柜设计安装前,设计者不仅要考虑变频控制柜的正常工作条件,还要考虑可能发生的故障条件以及随之引起的故障、可预见的误操作以及诸如温度、海拔、污染、湿度、电网电源的过电压和通信线路的过电压等外界影响。一定要了解控制柜的配制、工作方式、工作环境、控制方式、以及客户要求等。具体要求如表1所示。
w1.jpg

  (1) 电机具体参数:如电机参数表1所示:出厂日期、 厂商(国产, 进口)、电机的额定电压、额定电流、额定转数、相数、接法等。
  (2) 电机的负载特性类型:如 恒转矩负载;平方转矩负载;恒功率负载等。
  (3) 电机启动方式:如三角形启动;星形启动;降压启动;软启动。
  (4) 工作环境:如现场的温度、防护等级、电磁辐射等级、防爆等级、配电具体参数。
  (5) 控制柜安装位置:如壁挂式和落地式,要合理的考虑变频控制柜到电机的距离。
  (6) 控制柜拖动电机的数量:如一拖二,一拖三,一拖四等。
  (7) 工频与变频切换方式:一般为δ-y启动与变频工作互为备用切换保护。
  (8) 控制柜的外围器件的选用:如传感变送器的选用参数及采样地点,具体选用要求请详见“器件的配置”。
  (9) 控制柜的控制方式:如手动/自动、本地/远程、控制信号的量程、是否通讯组网。
  (10) 控制柜的隔离:如强电回路与弱电回路的隔离;采集信号与控制信号的隔离。
  (11) 工作场合的供电质量:如防雷,浪涌,电磁辐射。
3 变频控制柜布局和器件配置
  图1如所示的便是变频控制柜的基本布局。
w2.jpg

  变频控制柜分为壁挂式和落地式两种,变频控制柜主要器件的配置与选用介绍如下:
  (1) tr-变压器:这个为可选项,根据电压等级标准配置和选用。
  (2) fu-熔断丝:一般都需要添加,不要为了节省成本而省去。选择为2.5~4倍额定变频器电流。注意熔断丝的选择要选快熔类。
  (3)qa-断路器:断路器主要用于电源回路的开闭,且在出现过流或短路事故时自动断开电源。断路器的容量为变频器额定电流的1.5~2倍,断路器的时间特性要充分考虑变频器过载保护的时间特性。
  (4)km-接触器:接触器主要用于在工频电网和变频器之间的切换,保证变频器的输出端不会接到工频电网上去,以免损坏变频器。接触器频繁的闭合和断开将引起变频器故障,所以最高频率不要超过10次/min。
  (5) f-风扇:主要用于抽取变频控制柜里的热量,给变频控制柜散热;按供电方式分直流风扇和交流风扇,根据现场工作环境选用。
  (6) ly-防雷浪涌器:最好配置一个,特别雷暴多发区,以及交流电源尖峰浪涌多发场合,保护变频系统免遭意外破坏。一般配40kva浪涌器。
  (7)dk-电抗器:选择合适的电抗器与变频柜配套使用,既可以抑制谐波电流,降低变频器系统所产生的谐波总量,提高变频器的功率因数,又可以抑制来自电网的浪涌电流对变频器的冲击,保护变频器、降低电动机噪声。保证变频器和电机的可靠运行。
  (8)emi-滤波器:滤波器的作用是为了抑制从导线及金属管线上传导无线信号到设备中去,将来自变频器的高次谐波分量与电源系统的阻抗分离,或者抑制干扰信号从干扰源设备通过电源线传导到外边去。
  (9)rb-制动电阻:当电容电压超过设定置后,就经制动电阻消耗回馈的能量。一般小容量变频器带有制动电阻,大容量变频器的制动电阻通常由用户自己根据负载的性质和大小、负载周期等因素进行选配。
  (10) 另外还包括变频器,plc/dcs,触模屏,传感器,电度表等器件的选用。
4 变频控制柜布局的注意事项
  (1)确保控制柜中的所有设备接地良好,使用短和粗的接地线连接到公共接地点或接地母排上。连接到变频器的任何控制设备(比如一台plc)要与其共地,同样也要使用短和粗的导线接地。最好采用扁平导体(例如金属网),因其在高频时阻抗较低。如图2所示。
w3.jpg

  (2)控制柜低压单元,继电器,接触加以保护;当变频器到电机的连线超过100m时,当变频器供电源容量大于600kw/a或供电电源容量大于变频器容量的10倍时,建议加进输入输出电抗器。
  (3)确保控制柜中的接触器有灭弧功能,交流接触器采用r-c抑制器,直流接触器采用“飞轮”二极管,装入绕组中。采用压敏电阻抑制器也是很有效的。
  (4) 如果设备运行在一个对噪声敏感的环境中,可以采用emc滤波器减小辐射干扰。同时为了达到最优的效果,确保滤波器与安装板之间应有良好的接触。
  (5)电机电缆应与其它控制电缆分开走线,其最小距离为500mm。同时应避免电机电缆与控制电缆长距离平行走线。如果控制电缆和电源电缆交叉,应尽可能使它们按90°角交叉。同时必须用合适的夹子将电机电缆和控制电缆的屏蔽层固定到安装板上。
  (6) 为了有效的抑制电磁波的辐射和传导,变频器的电机电缆必须采用屏蔽电缆,屏蔽层的电导必须至少为每相导线芯的电导的1/10。
  (7) 控制柜应分别设置零线排组及保护地线排组(pe)。接地排组和pe 导电排必须接到横梁上 (铜排到铜排联接)。它们必须在电缆压盖处正对的附近位置。接地排组额外还要通过另外的电缆与保护电路(接地电排)连接。屏蔽总线用于确保各个电缆的屏蔽连接可靠,它通过一个横梁实现大面积的金属到金属联接。如图3所示。
w4.jpg

  (8)不能将装有显示器的操作面板安装在靠近电缆和带有线圈的设备旁边,例如电源电缆,接触器,继电器,螺线管阀,变压器等等,因为它们可以产生很强的磁场,影响仪器仪表的测量精度。
  (9) 功率部件(变压器,驱动部件,负载功率电源等等)与控制部件 (继电器控制部分,可编程控制器)必须要分开安装。但是并不适用于功率部件与控制部件设计为一体的产品,变频器和滤波器的金属外壳,都应该用低电阻与电柜连接,以减少高频瞬间电流的冲击。理想的情况是将模块安装到一个导电良好,黑色的金属板上,并将金属板安装到一个大的金属台面上。
  (10)设计控制柜体时要注意emc的区域原则,把不同的设备规划在不同的区域中。每个区域对噪声的发射和抗干扰度有不同的要求。区域在空间上最好用金属壳或在柜体内用接地隔离板隔离。并且考虑发热量,控制柜的风道要设计合理,排风通畅,避免在柜内形成涡流,在固定的位置形成灰尘堆积。风扇一般安装在靠近出风口处,进风风扇安装在下部,出风风扇安装在柜体的上部。
  (11)根据控制柜内设备的防护等级,需要考虑控制柜防尘以及防潮功能,一般使用的设备主要为:空调,风扇,热交换器,抗冷凝加热器。同时根据柜体的大小合适的选择不同功率的设备。关于风扇的选择,主要考虑柜内正常工作温度,柜外最高环境温度,求得一个温差,风扇的换气速率,估算出柜内空气容量。已知三个数据:温差,换气速率,空气容量后,求得柜内空气更换一次的时间,然后通过温差计算求得实际需要的换气速率。从而选择实际需要的风扇。因为一般夜间,温度下降,故会产生冷凝水,依附在柜内电路板上,所以需要选择相应的抗冷凝加热器以保持柜内温度。
  (12) 变频器安装的基本要求
  变频器最好安装在控制柜内的中部,变频器要垂直安装,正上方和正下方要避免可能阻挡排风、进风的大器件;变频器上、下部边缘距离,控制柜顶部、底部距离,或者隔板和必须安装的大器件的最小间距,都应该大于150mm;如果特殊用户在使用中需要取掉键盘,则变频器面板的键盘孔,一定要用胶带严格密封或者采用假面板替换,防止粉尘大量进入变频器内部。
5 变频控制柜器件的安装
  (1) 控制柜内所有器件应按照国家行业标准和用户要求进行安装。组装前首先看清楚图纸及技术要求,必须按照图纸安装。
  (2)认真整理安装图纸中发现的疑难问题,如平面图与系统图不符、管径与导线截面不符、管线途径不明等在参加图纸会审时及时向设计部门提出,力求将图中问题解决在安装以前。
  (3) 检查变频器型号、元器件型号、规格、数量等与图纸是否相符;检查变频器、plc、触模屏等器件有无损坏。
  (4) 元器件组装顺序应从板前视,由左至右,由上至下。
  (5) 组装所用紧固件及金属零部件均应有防护层,对螺钉过孔、边缘及表面的毛刺、尖锋应打磨平整后再涂敷导电膏。
  (6) 主回路上面的元器件,如滤波器、电抗器,变压器、plc、变频器等需要接地,注意断路器不需要接地。
  (7)对于发热元件(例如管形电阻、散热片等)的安装应考虑其散热情况和安装距离应符合规定。额定功率为75w及以上的管形电阻器应横装,不得垂直地面竖向安装,正确地的安装方法如图4所示。
w5.jpg

  (8) 所有电器元件及附件,均应固定安装在支架或底板上,不得悬吊在电器及连线上。
  (9) 安装因振动易损坏的元件时,应在元件和安装板之间加装橡胶垫减震。
  (10) 接线面每个元件的附近有标牌,标注应与图纸相符。除元件本身附有供填写的标识牌外,标识牌不得固定在元件本体上。
  注意:一是接线端子和进出的电缆、电线每回路应有标志,标号应完整、清晰、牢固,标号粘贴位置应明确、醒目。如图5所示。
w6.jpg

  二是安装于面板、门板上的元件、其标号应粘贴于面板及门板背面元件下方,如下方无位置时可贴于左方,但粘贴位置尽可能一致。
  (11) 器件保护接地连续性
  保护接地连续性利用有效接线来保证,如图6所示。柜内任意两个金属部件通过螺钉连接时如有绝缘层均应采用相应规格的接地垫圈,而且要注意将垫圈齿面接触零部件表面,或者破坏绝缘层。门上的接地处要加“抓垫”或“菊花垫“,防止因为油漆的问题而接触不好,而且连接线要尽量短。
w7.jpg

6 变频控制柜一次回路布线
  (1) 变频控制柜一次回路配线大多采用绝缘导线,如图7所示;对于一些大功率大电流变频控制柜应尽量选用矩形铜母线。
w8.jpg

  (2)汇流母线应按设计要求选取,主进线柜和联络柜母线按汇流选取,分支母线的选择应以自动空气开关的脱扣器额定工作电流为准,如自动空气开关不带脱扣器,则以其开关的额定电流值为准。对自动空气开关以下有数个分支回路的,如分支回路也装有自动空气开关,仍按上述原则选择分支母线截面。如没有自动空气开关,比如只有刀开关、熔断器、低压电流互感器等则以低压电流互感器的一侧额定电流值选取分支母线截面。如果这些都没有,还可按接触器额定电流选取,如接触器也没有,最后才是按熔断器熔芯额定电流值选取。
  (3) 导线载流量选择需查询有关文档,聚氯乙烯绝缘导线在线槽中,或导线成束状走行时,或防护等级较高时应适当考虑裕量。
  (4)导线应避开飞弧区域。当交流主电路穿越形成闭合磁路的金属框架时,三相导线应在同一框孔中穿过;接线不规范,必须把进入线槽的大电缆外层都剥开,把所有导线压进线槽。
  (5) 导线线槽弯处的半径不小于线槽内电缆最小允许弯曲半径,导线最小允许弯曲半径如表2所示。
w9.jpg

  (6)导线连接在面板和门板上时,需要加塑料管和安装线槽;柜体出线部分为防止锋利的边缘割伤绝缘层,必须加塑料护套。电缆与柜体金属有摩擦时,需加橡胶垫圈以保护电缆,如图8所示。
w10.jpg

  (7) 柜体内任意两个金属零部件通过螺钉连接时如有绝缘层均应采用相应规格的接地垫圈,
  并注意将垫圈齿面接触零件表面,以保证保护电路的连续性。
  (8) 导线搭接螺丝应外露2~3扣,螺孔比螺丝大1mm连接面涂电力复合脂,应采用镀锌螺栓并有防松装置,所有的螺栓受力程度应一致。
  (9)提高柜体屏蔽功能,如需要外部接线或出线时,需加电磁屏蔽衬垫,柜体孔缝要求为求缝长或孔径小于λ/(10~100)。如果需要在电柜内开通风窗口,交错排列的孔或高频率分布的网格比狭缝好,因为狭缝会在电柜中传导高频信号。
7 变频控制柜二次回路布线
  (1)二次线的连接(包括螺栓连接、插接、焊接等)均应牢固可靠,线束应横平竖直、配置坚牢、层次分明、整齐美观。同一控制柜的相同器件走线方式应一致。如图9所示。
w11.jpg

  (2) 二次线截面积要求:
  单股导线 不小于1.5mm2;
  多股导线 不小于1.0mm2;
  弱电回路 不小于0.5mm2;
  电流回路 不小于2.5mm2;
  保护接地线 不小于2.5mm2。
  (3)所有连接导线中间不应有接头;每个电器元件的接点最多允许接2根线;每个端子的接线点一般不宜接二根导线,特殊情况时如果必须接2根导线,则连接必须可靠。如图10所示。
w12.jpg

  (4) 二次线应远离飞弧元件,并不得防碍电器的操作;二次线不得从母线相间穿过。
  (5) 电流表与分流器的连线之间不得经过端子,其线长不得超过3m;电流表与电流互感器之间的连线必须经过试验端子。
  (6) 控制用屏蔽电缆线的连接
  拧紧屏蔽线至约15mm长为上;
  用线鼻子把导线与屏蔽压在一起;
  压过的线回折在绝缘导线外层上;
  用热缩管固定导线连接的部分。
  (7) 控制用电缆线连接的注意事项
  控制用的电缆线最好使用屏蔽电缆;
  模拟信号和数字信号的传输电缆应该分别屏蔽和走线;
  模拟信号的传输线和低压数字信号线应使用双屏蔽的双绞线,也可以使用单屏蔽的双绞线。
  信号线最好只从一侧进入电柜,信号电缆的屏蔽层双端接地,在不影响操作和安装条件下,信号电缆线应避免过长;
  不要将24vdc 和115/230vac 信号共用同一条电缆槽。
8 变频控制柜维护和检修
  (1)检查变频控制柜周围环境,利用温度计,湿度计,记录仪检查周围温度-10℃~+50℃,周围湿度90%以下,而且无灰尘、无金属粉尘及通风良好等。
  (2) 检查各部件各系统装置是否有异常振动和异常声音。
  (3) 观察元件是否有发热的迹象,是否有损伤,连接部件是否有松脱。
  (4) 检查端子排是否损伤,导体是否歪斜,导线外层是否破损。
  (5)检查电源电压主回路电压是否正常。对于绝缘测试,可于使用前,拆下变频器接线,将端子r、s、t、u、v、w一起短路,用dc500v级兆欧表测量它们与接地端子间的绝缘电阻,其绝缘电阻不得小4mω。(注:不可随意实施耐压测试实验,它将导致变频器寿命降低。)
  (6) 检查滤波电容器是否泄漏液体,是否膨涨,用容量测定器测量静电容应在定额容量的85%
  以上;检查继电器和接触器动作时是否有“吱、吱”声音,触点是否粗糙、断裂;检查电阻器绝缘物是否有裂痕,确认是否有断线。
  (7) 检查变频器运行时,各相间输出电压是否平衡;进行顺序保护动作试验、显示、保护回路是否异常。
  (8)如果超过一年仍未使用,则应进行充电试验,以使机内主回路滤波电容器特性得以恢复。充电时,可使用调压器慢慢升高变频器的输入电压,直到额定输入电压,,通电时间要在1~2h以上。上述实验至少每年一次。
9 结束语
  随着变频调速技术的不断推广,规范变频控制柜产品的结构设计和安装工艺,使其符合行业标准和设计、安装、控制要求。不仅可以提高生产质量、舒适性、生产效率,创造可观的经济效益;对节能、环保等社会效益同样有着重要的意义。希望上述工作对于从事控制与传动的同行们在以后的设计应用工作中能有所启发和借鉴
1770309616 发表于 2012-3-13 23:52:22
基于CAN总线的变频设备远程监控系统的实现

1 引言
  近年来,随着国家建设节约型社会的提出,对节能节电的重视程度越来越高,特别是加大了对国有企业中的大型用电设备的节能改造力度,变频器在油田、煤矿、发电厂、钢铁厂等国有大型企业中的使用数量越来越多。特别是油田上,抽油机变频器、潜油电泵变频器、注水泵变频器和加热电源等电力电子设备在油田的大面积推广使用。根据油田生产野外作业的特殊性,即每个设备之间的距离比较远,但又相对集中,所以基于各种现场总线的集中控制显得越来越有必要。can总线在变频设备的集中管理和控制上显示了突出的优势,其超远距离传输,和超强的抗干扰性是其他总线所不能比拟的。另外最重要的一点是在整个控制系统中,可不分主从的组网拓扑结构,方便地增减通讯节点。
  山东新风光电子科技发展有限公司的中、低压变频器和加热电源性能稳定,各种保护功能齐全,具有rs-232和rs-485通讯接口。到2007年6月份止,在大庆油田,胜利油田的使用中、低压变频器总数数量超过700台,其中胜利油田大概500台左右,并且呈现快速上升的趋势。另外在新乡制药集团的发酵罐应用的变频器设备也有上百套。这对于同一品牌的变频器在同一领域内的市场占有率是相当高的。这就为基于can总线的远程集中监控系统提供了很大的市场条件,也有了推广的必要性。另外该系统对于同时拥有多台变频设备的生产现场都能灵活应用。
2 can总线介绍
  can使用的通讯协议是csma/cd协议(carrier sense multiple access/collisiondetection)。网络上的每个节点在向总线发送数据的时候总是要监听总线的状态是否空闲,若检测到没冲突,即总线处于空闲状态,这时候每个节点向总线发送数据且每个节点的机会均等,即载波监听多路访问。如果两个节点同时向总线发送数据,节点检测到冲突,并做出相应的无损仲裁处理。即在冲突以后,数据能保持不变,继续监听总线,等待下一次发送。
  can协议是一个基于消息格式的协议而不是完全基于节点id的传输的协议,废除了传统的站地址编码。基于这种协议:消息的传输不只是按照地址从一个节点传输到另一个节点,还可以实现组播和广播。广播时,系统中的每个节点都能接收总线上传输的数据并确认是否每个消息都能被正确的接收。同时每个节点都能判断接收的数据是应该被保存还是立刻丢弃。在can通讯过程中的错误检测中主要包括:应答错误,格式错误,位错误,填充错误。其中主要的错误状态有错误激活,错误认可,总线关闭等。
  can总线有以下特点:
  (1) can可以是对等结构,即多主机工作方式,网络上任意一个节点可以在任意时刻主动地向网络上其它节点发送信息,不分主从,通讯方式灵活;
  (2) can网络上的节点可以分为不同的优先级,满足不同的实时需要;
  (3)can采用非破坏性仲裁技术,当两个节点同时向网络上传送信息时,优先级低的节点自动停止发送,在网络负载很重的情况下不会出现网络瘫痪;
  (4)can可以点对点、点对多点、点对网络的方式发送和接收数据,通讯距离最远10km,在距离10km的设备传输速率也可达到5kbps,40m以内的传输速率为1mbps,节点数目可达110个;
  (5)can采用的是短帧结构,每一帧的有效字节数为8个,具有crc校验和其它检测措施,数据出错几率小。can节点在错误严重的情况下,具有自动关闭功能,不会影响总线上其它节点操作;
  (6) 通讯介质采用廉价的双绞线,无特殊要求,用户接口简单,容易构成用户系统。
3 系统拓扑
  如图1所示,整个系统由3个部分组成,节点信息采集卡,can-rs232/485转换接口和监控计算机。
r1.jpg

  图1 系统拓扑图

  3.1 变频器节点信息采集
  节点信息主要是指变频器的各个运行参数以及运行状态,风光变频器常用的参数设置主要有:运行频率、最高频率、起始频率、加速时间、减速时间、额定电流、v/f曲线选择、开环/闭环设定、多段速设定、实际输入电流、电压、实际输出电流、电压、低频补偿等;另外还有多种故障保护监测:短路保护(瞬间电流超过额定电流的1.8倍)、过流保护(电流超过额定电流的1.5倍并持续1min)、过压保护(输入电压超出额定电压的1.2倍)、欠压保护(输入电压低于额定电压的0.8倍)、温升保护(变频器内部温度高于75℃)、缺相保护、外部异常保护等等。
  目前的采集方式有两种:对于原来的机型主控芯片为n87c196mc,主控板的对外的通讯方式为rs-485,所以在与can总线通讯是必须外加一个rs485-can的转换电路。如图2所示。
r2.jpg

  图2 节点信息采集示意图

  随着产品的升级换代,dsp的应用使得通讯变得更加容易,ti公司的tsmlf2407a芯片上集成了can通讯接口,可以省略上面的电路。升级后的风光变频器实现can总线通讯将会变得更加的简单。
  3.2 数据的传输与转换
  数据在送到总线上后,要通过介质传输,于can协议本身对差错控制算法比较优化,所以对介质没有很高的要求,用普通的双绞线由就能够达到10km的传输距离。但是考虑到变频器运行和设备控制的绝对可靠性,我们在5km的传输范围内使用双绞线,在超出5km时采用光纤作为中间传输介质用来提高抗干扰能力。
  can在传输到控制计算机时,必须外加一个电平转换器来完成与主控计算机的数据交换,其转换原理参见图2。另外这种转换装置在目前的市场上有比较成熟的产品,如图3所示为周立功推出的转换接口,对用户来说,使用起来基本上属于透明设备,使用比较方便。
r3.jpg

  图3 can-232转换接口卡

r4.jpg

  图4 人机界面示意图

  3.3 人机界面
  监控计算机的监控程序配置有特定系统和通用型系统两种,下面是一个通用型20套设备的集中监控人机界面。整个人机界面系统包括两个部分:设备监测部分和设备控制部分,如图4所示。
  若在系统中增加一个设备后,可以人为的为该设备设置一个设备号,并在系统中存储,即启用一个设备号。在系统移除一个设备后,可以删除设备号,也可以再重新利用。启用后的设备编号为可操作编号,否则该编号不可操作。设备正常运行后,正常指示绿灯亮,出现异常,红灯亮。
  为方便操作,可以对整个系统中的多台设备分成若干个控制组进行管理,在按组操作时,对该组中的所有设备同时做出相应操作:开机,停机,紧急停机,参数设置,频率调节等。可以同时查看该组中的共同的参数设置。双击设备号也可以按设备查看运行状态和运行曲线,也可以方便的对单个设备进行各种操作,也可以对系统中的全部设备同时操作。
4  结束语
  在整个系统中,设计本着灵活方便的原则,按照能够适应于多个工作现场的思想来设计的。硬件节点部分发生故障后,能够在最短的时间内把数据上传。上位机也能实时的对各个设备进行观测和控制,实现了远程监控的目的,方便了操作,增强了系统的可靠性,同时还节约了生产成本。
1770309616 发表于 2012-3-13 23:59:31
工程型变频器机械制动控制功能应用研究

1 引言
  随着新型电力电子器件和高性能微处理器的应用以及电机控制技术和现场总线技术的发展,变频器向单元化、数字化、智能化和网络化方向发展。西门子公司6se70/6se71系列矢量型(vc)变频器和abb公司acs800/acc800系列直接转矩型(dtc)变频器都具备了单元化、数字化、智能化和网络化的特点,是目前高性能工程型变频器的代表。针对位能型负载的特点,6se70/6se71系列变频器和acs800/acc800系列变频器都设计了机械制动控制功能,也就是常说的抱闸控制功能,该控制功能的主要作用是:在传动单元停止或未通电时,可以通过机械制动将电机和被驱动设备锁停在零速状态,保证了位能型负载和传动单元及设备的安全。
2 变频器机械制动控制功能的目的及应用
  2.1 机械制动控制功能的目的
  对于位能型负载来说,由于重物具有重力的原因,如没有专门的制动装置,重物在空中是停不住的。为此,电动机轴上必须加装机械制动器,常用的有电磁铁制动器和液压电磁制动器等。多数制动器都采用常闭式的,即:线圈断电时制动器依靠弹簧的力量将轴抱住;线圈通电时松开。在重物开始升降或停住时,要求制动器和电动机的动作之间,必须紧密配合。由于制动器从抱紧到松开,以及从松开到抱紧的动作过程需要时间(约0.6s,因电动机的容量大小而异),而电动机转矩的产生或消失,是在通电或断电瞬间就立刻反映的。因此,两者在动作的配合上极易出现问题。如电动机已经通电,而制动器尚未松开,将导致电动机的严重过载;反之,如电动机已经断电,而制动器尚未抱紧,则重物必将下滑,出现溜钩现象。
  2.2 通用型变频器机械制动控制的应用
  2.2.1 通用型变频器机械制动控制
  自变频器开始应用在位能型负载领域,其机械制动控制功能就是设计、维护的重点,由于通用型变频器本身的局限性,可以使用的资源并不是很多,在实际应用中,一般有以下控制方法:
  (1)应用变频器的可定义开关量输出信号和故障输出信号构成机械制动控制信号;
  (2)应用变频器的运行信号和故障输出构成机械制动控制信号;
  (3)变频器的运行信号、开关量输出信号和故障输出信号、电流模拟量信号输入到plc,应用plc的编程控制功能设计机械制动控制条件,plc输出信号控制机械制动器。
  以上三种方法中,前两种一般应用在控制要求不高,简单的系统中,第三种应用在稍复杂系统中,控制精度要求较高,而且一般应用需要有plc系统。在90年代中期,济钢第一炼钢厂氧枪控制系统变频改造中,设计者充分应用了变频器可以使用的信号来完成机械制动的控制,是plc系统参与机械制动的一个典型例子。其控制思想是:plc系统采集变频器的运行信号、可定义开关量输出信号、故障输出信号和电流模拟量信号,其中可定义开关量输出信号定义为大于3hz输出;利用电流模拟量信号和plc的比较功能,设定开关机械制动的电流门槛值,plc系统综合以上条件设计出开关机械制动的条件,通过plc的输出控制机械制动器的线圈。plc系统参与通用变频器机械制动的电气原理图如图1所示。
t1.jpg

  2.2.2 通用型变频器机械制动控制过程
  下面就以通用变频器可定义的开关量信号和电流信号为主信号的机械制动控制为例,来描述在启动停止中通用变频器机械制动控制的具体工作过程:
  (1) 负载启动时机械制动控制过程
  设定一个“升降起始频率”fsd当变频器的工作频率上升到fsd时,将暂停上升。为了确保当制动电磁铁松开后,变频器已能控制住重物的升降而不会溜钩,所以,在工作频率到达fsd的同时,变频器将开始检测电流,并设定检测电流所需时间tsc;发出“松开指令”当变频器确认已经有足够大的输出电流时,将发出一个“松开指令”,使机械制动控制器开始通电;设定一个frd的维持时间trd,trd的长短应略大于机械制动控制器从通电到完全松开所需要的时间;变频器将工作频率上升至所需频率
  负载启动的机械制动控制过程如图2所示。
t2.jpg

  (2)负载停止时机械制动控制过程
  设定一个“停止起始频率”fbs
  当变频器的工作频率下降到fbs(如3hz)时,变频器将输出一个“频率到达信号”,发出机械制动控制器断电指令;
  设定一个fbs的维持时间tbb
  tbb的长短应略大于机械制动控制器从开始释放到完全抱住所需要的时间;
  变频器将工作频率下降至0
  负载停止时机械制动控制过程过程如图3所示。
t3.jpg

  2.3 工程型变频器机械制动控制的应用
  2.3.1 工程型变频器机械制动的方法
  随着高性能微处理器技术的发展以及dsp技术在变频器中的应用,变频器不仅具备了优越的控制性能而且拥有了强大数字编程处理能力。西门子公司6se70/6se71变频器和abb公司acs800/acc800变频器在内部功能上都设计了机械制动控制功能,机械制动控制逻辑集成在变频器的应用中,用户通过简单的定义和硬线连接就可以实现复杂的机械制动控制功能。工程型变频器的机械制动控制思想是:变频器应用其采集到的各种信号,例如电流转矩信号、速度信号、故障信号等在内部通过逻辑计算得出一个开关机械制动控制器的信号,直接输出信号控制机械制动控制器,同时产生一些控制信号(例如内部给定使能、逆变器使能)来控制变频器的运行配合机械制动器的动作,该功能也可以利用机械制动控制器的检测元件来检测机械制动器是否正常。图4所示为一个工程型变频器机械制动控制的应用原理图。
t4.jpg

  2.3.2  工程型变频器机械制动的控制过程
  下面就以工程型变频器机械制动控制功能实现的机械制动为例,描述负载在启动、停止时机械制动器的运行过程,工程型变频器机械制动控制的过程如图5所示。
t5.jpg

  (1)负载启动时机械制动控制过程
  设定一个“制动器打开时的启动转矩”ts
  当变频器的启动指令以及外部速度给定使能信号都具备,变频器开始工作,为保证开机械制动时电机有足够的力矩,负载不至于下滑,设定一个打开制动器的门槛转矩值ts,门槛信号也可以应用电流信号;
  发出“制动器打开指令”
  当变频器确认已经有足够大的输出转矩(电流)时,其他逻辑条件都具备时将发出一个“制动器打开指令”,使机械制动控制器开始通电;
  设定一个“制动器打开时间”tod
  当变频器确认机械制动器已经打开,经过“制动器打开时间”tod后,通过控制功能控制内部给定使能,使变频器开始沿速度曲线升至所需速度。
  负载启动的机械制动控制过程见图5中1到4所示过程。
  (2) 负载停止时机械制动控制过程
  设定一个“制动器闭合的转速”ncs
  变频器设定一个“制动器闭合的转速”ncs,为保证制动器闭合时电机有足够的力矩,负载不至于下滑,设定一个关闭制动器的门槛转矩值ncs,制动器闭合的门槛信号一般使用速度信号;
  发出“制动器闭合指令”
  变频器停止运行时,当外部给定使能和外部速度信号停止后,速度沿变频器速度曲线下降,当变频器检测到ncs(如5%额定速度)时,变频器将输出一个“制动器闭合”信号,发出制动器断电指令;
  设定一个“制动器闭合时间”tcd
  当变频器确认机械制动器已经闭合,经过“制动器打开闭合”tcd后,通过控制功能封锁变频器内部给定使能(电机励磁)以及逆变器使能,变频器立即停止工作。
  负载停止时的机械制动控制过程见图5中5到7所示过程。
  2.4  通用变频器机械制动与工程型变频器的比较
  工程型变频器的机械制动控制功能与通用型变频器机械制动控制功能相比,其优点主要有以下三个方面:
  2.4.1 控制方法及思想
  通用型变频器由于本身的局限性,其可以应用的资源并不多,应用变频器提供的输出点对于设计开关机械制动功能,这些也只是同级别控制信号;而工程型变频器具有的可编程性,内部采集到的各种信号可以直接或编程后提供给机械制动功能使用,工程型内部有专门的机械制动功能模块,其采用rs触发控制器,关机械制动条件优先,对于机械制动功能来说是最为合理和安全的,所以工程型变频器机械制动功能的控制方法及思想更为合理。
  2.4.2 控制性能及精度
  通用型变频器机械制动功能采用plc控制,也可以使机械制动功能考虑更多的条件,但是plc通过通讯等方式采集变频器的数据,然后做机械制动逻辑控制,系统至少一个循环的时间执行plc程序并运算出结果,然后通过输出模块控制机械制动控制器,加起来就算200ms,对于高精度要求的负载(比如电梯系统)来说,也是难以容忍的。对于工程型变频器,机械制动逻辑控制的运算时间,只是一个硬件运算的时间,工程型变频器机械制动功能可以让变频器的控制性能和精度达到最高。
  2.4.3 安全性能
  通用型变频器机械制动控制的控制仅采集变频器的信号,而不给变频器任何信息和控制,工程型变频器的机械制动控制功能提供变频器的内部给定使能和逆变器使能两个控制信号,通过这两个信号控制变频器的内部给定启动和逆变器停止,在机械制动器打开和关闭时变频器配合机械制动器的运行,保护变频器以及负载的安全,工程型变频器机械制动功能使变频器具有更高的安全性能。
3 西门子6se70变频器的特点及机械制动功能
  3.1 西门子6se70变频器的特点
  西门子6se70全数字矢量控制变频装置属于simovertmasterdriv系列,是西门子目前高性能变频器杰出产品,其全数字化和强大的软件控制功能、监视功能、记录功能和保护功能,为其装置运行的稳定性、可靠性提供了保证。其可选择的控制功能,既可以选择压频控制,也可以选择矢量控制,标量控制,适合于各种不同负载特性的要求;灵活的参数设置,可以方便修改参数、控制方式;兼容的通讯功能,可以与其它控制系统进行通讯;通过参数选择,变频器既可在本地控制,也可以通过现场总线构成的通讯网进行远程控制。
  3.2 西门子6se70变频器机械制动功能
  西门子6se70系列变频器机械制动功能非常强大,工程型变频器的可编程的优点显示的淋漓尽致,机械制动功能控制有:没有外部机械制动器的控制、有外部机械制动器不带机械制动器检测的控制和有外部机械制动器带机械制动器检测的控制三种方式,而且利用机械制动功能可以控制变频器的给定使能、逆变器使能使变频器快速停止,其控制原理框图如图6所示。
t6.jpg

  3.3 西门子6se70变频器机械制动功能的实现
  3.3.1 机械制动控制功能原理
  西门子机械制动控制是利用rs触发器原理,开机械制动器(s)的关系是“与”,所有条件都具备才能开机械制动器,关机械制动器(r)的关系是“或”,有一个关机械制动器的条件到就关机械制动器,而且rs触发器复位优先,在机械制动器实际应用中也就是机械制动器闭合优先,这种控制方式对于机械制动器控制更为安全。通过rs触发器可以得到两个内部开关量信号,其连接到变频器的开关量输出点就可以实现控制机械制动控制器;同时机械制动控制功能产生变频器内部给定使能和逆变器使能控制信号,可以根据实际需要选择使用控制变频器内部给定和逆变器的开通和关断。
  3.3.2 机械制动控制的组成
  如图6所示的是西门子变频器机械制动功能框图,可以分为7个部分:开机械制动条件、关机械制动条件、开关机械制动控制信号、控制给定积分使能信号、控制逆变器使能信号、开机械制动检测功能的报警信号、关机械制动检测功能的报警信号。其主要的部分分述如下:
  (1)开机械制动条件
  开机械制动器的逻辑关系是“与”,也就是所有条件都具备才能开机械制动器,在该功能中,一共有四个条件,其中电机励磁为固定条件,其他三个条件可以设定。参数p608可以设定两个开关量控制信号,一般使用一个变频器的运行信号(b104)即可;在该功能设定中最重要的是开机械制动器门槛控制的设定,参数p610是定义选择的参考量,常选用电流信号(kk242),p611是参考信号额定数值的百分数,根据实际需要定义,一般为20%左右,开机械制动条件的原理见图6中1所示部分。
  (2)关机械制动条件
  关机械制动器(r)的条件是“或”,有一个关机械制动器的条件到就关机械制动器,在该功能中,一共有6个条件,其中电源停止为固定条件,其他5个条件可以设定。参数p609可以设定四个开关量控制信号,一般使用一个变频器的未运行信号(b105)即可;在该功能设定中最重要的是关机械制动器门槛控制的设定,参数p615是定义选择的参考量,常选用速度信号(kk148或kk91),p616是参考信号额定数值的百分数,根据实际需要定义,一般为10%左右,需要注意的是参数p617,应用该参数可以把关机械制动器的信号由一个下跳沿信号变成一个宽脉冲信号,常定义为0.5s,关机械制动器门槛信号还需在停止信号、无故障信号和参数p614中的一个为常1时有效。关机械制动条件的原理见图6中2所示部分。
  (3)开关机械制动控制信号
  经rs触发器处理后,得到两个机械制动控制信号开机械制动控制信号(b0275)和关机械制动控制信号(b0276),开关机械制动控制信号的原理见图6中3所示部分。
  (4)控制给定积分使能信号
  西门子变频器可以通过参数p605选择三种机械制动功能控制模式,当选择为无机械制动(p605=0)时,给定积分使能信号(b0277)为常1;当选择有机械制动不带检测信息模式(p605=1)时,当机械制动信号打开时,通过参数p606设定的时间后,启动内部给定使能,停止时,当机械制动信号闭合时,通过参数p606设定的时间后,封锁内部给定使能;当选择有机械制动带检测信息模式(p605=2)时,当机械制动信号打开时,通过参数p606设定的时间并检测到制动器打开信号后,启动内部给定使能,当机械制动信号闭合时,通过参数p606设定的时间并检测到机械制动器返回信息后,封锁内部给定使能。应用该功能控制字p564需定义为b0277,机械制动控制给定积分使能原理见图6中4所示部分
  (5)控制逆变器使能信号
  控制逆变器使能信号主要来自关机械制动条件中关机械制动器门槛控制信号,系统启动后逆变器使能信号(b0278)为1信号,变频器选择为无机械制动(p605=0)时,当关机械制动门槛控制信号条件具备,立即封锁逆变器使能信号;选择有机械制动不带检测信息模式(p605=1)时,当关机械制动条件具备时,通过参数p607设定的时间后,延时封锁内部逆变器使能信号;选择有机械制动带检测信息模式(p605=2)时,当关机械制动门槛控制信号条件具备时,通过参数p607设定的时间并检测到机械制动器返回信号后,立即封锁内部逆变器使能信号。应用该功能控制字p561需定义为b0278,机械制动控制逆变器使能原理见图6中5所示部分
  3.3.3 机械制动控制信号的输出
  西门子变频器机械制动控制信号可以应用三种方式的输出:
  (1) 使用x101的开关量输出点(+24v);
  (2) 通过扩展eb2板的开关量信号输出(+24v);
  (3)利用x9端子的4,5(一对220v的无源点)进行输出。实际应用中,机械制动控制器的控制电压一般采用220v,使用前两种输出,控制信号还需要用中间继电器转换,增加中间环节就是增加控制时间和故障点。
  在以上三种输出方法中,应用控制信号x9(4,5)输出直接参与机械制动控制器为最好。
4 西门子6se70变频器机械制动功能在济钢副枪中的应用[4]
  4.1 济钢副枪起升变频控制系统
  济钢三炼钢工程是济钢集团做强做大的重点工程,其转炉控制系统应用了达涅利-康乐斯公司的副枪技术。副枪电气传动控制系统包括副枪起升驱动系统、副枪旋转驱动系统、apc系统(探头自动装卸装置)。
  4.1.1 副枪起升驱动设备
  副枪起升设备位于卷扬平台上,包括一55kwac电机,dc抱闸,齿轮箱,卷扬筒,用于速度控制的测速发生器和两个用于高度测量的脉冲发生器(第二个脉冲发生器是出于安全角度考虑安装的)。一旦脉冲发生器间出现不允许误差,只能以低速进行停止降枪和提枪操作。事故方式下,副枪可以通过事故dc蓄电池从转炉中提出,除此之外,没有其它任何动作。副枪起升控制的工艺要求如表1所示。
t7.jpg

  4.1.2 副枪起升变频控制系统
  副枪起升电气控制系统由两套变频控制器组成:正常模式变频器、应急模式变频器。正常模式主要完成副枪的手动、半自动、计算机控制三种模式的操作;应急模式完成事故状态下操作。副枪起升驱动电机是55kw,正常模式选择的是西门子75kw变频器(6se7031-2ef60),制动单元选择的是50kw(6se7028-0ea87-2da0),反馈装置选择的是脉冲编码器(1024p/r),因为现场距离设备将近100m,选择数字测速机dt1(6se7090-0xx84-3db0)对信号进行放大、修复。应急模式选择的是西门子75kw变频器(6se7031-2ef60),不带制动单元和反馈装置。正常模式、应急模式变频器均带输入、输出电抗器消除谐波、抑制尖峰电压。
  4.2 机械制动控制功能在副枪变频器系统中的应用
  在副枪起升控制中,正常模式使用的是有外部机械机械制动带机械制动信号检测的功能,应急模式应用的是有外部机械机械制动不带机械制动检测的控制模式,而且应急模式未设计制动单元,在此种模式下利用具有的机械制动信号控制变频器给定使能和逆变器信号使能对变频器进行控制。
  4.2.1 正常模式
  正常模式的开机械制动条件是变频器运行信号和变频器电流等于电机额定电流的20%,在这两个条件都具备才开机械制动,保证开机械制动时电机有足够的力矩,负载不至于下滑。关机械制动的条件有变频器停止和电机速度等于额定速度5%,利用速度检测信号来实现关机械制动,其控制安全性优于利用检测的电流信号,因为对于双环控制系统来说,速度环是稳定的,在系统停止过程中速度信号是稳定变化。
  正常模式变频器机械制动控制使用了机械制动检测功能,外部机械制动上安装一限位(x101,6开关量输入)作为检测机械制动是否到位信号,开机械制动时,在开机械制动条件到而在1.0s内机械制动检测信号未到则认为是故障状态,封锁变频器(逆变器信号使能),并报警a036;关机械制动时关机械制动条件到而在1.6s内机械制动信号一直保持则认为是故障状态,封锁变频器(给定使能),并报警a037。
  在副枪正常模式下,机械制动控制信号利用x9(4,5)输出直接参与机械制动接触器控制。
  4.2.2 应急模式
  应急模式的变频器机械制动控制基本上与正常模式变频器机械制动控制相同,由于在应急控制方式下,没有使用制动单元,所以关机械制动的速度阀值很低,以免大的回馈电压冲击变频器。应急模式使用无机械制动检测信号控制方式,该控制方式应用的是控制开关机械制动信号在定义时间内不动作,则封锁变频器的给定使能和逆变器信号使能。副枪应急模式下,机械制动控制信号利用x9(4,5)输出直接参与机械制动接触器控制。
  4.3 副枪机械制动控制参数应用
  副枪提升正常模式变频器、应急模式变频器的机械制动控制参数分别选用带机械制动检测信号模式和不带机械制动检测模式,其变频器机械制动控制参数如表2所示。
t8.jpg

5 结束语
  应用工程型变频器的机械制动控制功能,能很好地实现位能型负载在开始升降或停止时,要求制动器和电动机的动作之间,必须紧密配合的要求,该功能的实现保证了位能型负载和传动单元及设备的安全。但是需要注意的是,在各种安全规定和相关标准(iec61800-2)中变频器被定义完全驱动单元和基本驱动单元,没有列为安全器件,因此不能将安全完全依赖于变频器的制动器控制功能性能上,而应严格执行特殊的安全规定[3]。
1770309616 发表于 2012-3-14 00:15:43
变频器应用中需要注意的三个问题

1 引言
  随着变频器的大规模工程应用,有各个技术等级和其它相关技术层面的大量工程人员需要掌握变频器应用技术。例如普通电气工人,初级电气工程师或机械工程师等。同时,变频器也越来越多地应用到各种复杂的工程环境中去,书本中各种常规的技术常常难以解决变频器应用中的特殊问题。本文基于台达品牌kg系列变频器,针对3个变频器应用问题给出原理性的分析设计技术。技术原理实际上也适用其它变频器工程应用条件。
2 变频器抗干扰技术
  变频器的干扰问题,一直困扰很多客户,在此将一些常见的干扰及排除方法,介绍给大家:
  2.1 常见的干扰途径
  (1)空中辐射方式。以电磁波的方式在空中传播;
  (2)线路传播方式。主要通过电源网络传播;
  (3)线间感应方式。电感产生的电磁感应或电容产生的静电感应通过线间感应的方式传播。
  2.2 干扰源的排除
  (1)高频大功率的直流电焊机应远离变频器。电焊机自身的接地应良好;
  (2)电磁铁的通断触点应加装rc滤波吸收器;
  (3)与变频器装在同一电柜中的接触器,要剔除劣质品。要选择开关低噪声,灭弧效果好的产品。必要时也要加装rc滤波吸收器;
  (4)供电电源阻抗要低,以免附近有上百千瓦电器的启停,造成变频器输入电压产生过高的瞬间突变;
  (5)供电电源的相电压要平衡,以免导致220v单相输入的变频器在欠压或过压的状态下工作;
  (6)对用户的厂自发电系统,要求输出电源电压不要忽高忽低,要避免突变,要稳定。
  2.3 变频器抗干扰的常用措施
  (1)变频器的e端要与控制柜及电机的外壳相连,要接保安地,接地电阻应小于100ω,可吸收突跳干扰;
  (2)变频器的输入或输出端加装电感式磁环滤波器。以台达kg系列变频器为例(还有许多变频器品牌使用手册有规格提供),平行并绕3~4圈,有助于抑制高次谐波(此方法简单易行,价格低廉)。若需进一步加强抗干扰效果,可选台达变频器专用的符合emc标准的滤波装置(台达变频器使用手册有规格提供);
  (3)上述磁环滤波器还可根据现场情况加绕在变频器控制信号端或模拟信号给定端的进线上;
  (4)装有变频器的电控柜中,动力线和信号线应分开穿管走线,金属软管应接地良好;
  (5)模拟信号线要选用屏蔽线,单端在变频器处接仿真地;
  (6)还可通过调整变频器的载频来改善干扰。频率越低,干扰越小,但电磁噪声越大;
  (7)rs-485通讯口与上位机相连一定要采用光电隔离的传输方式,以提高通信系统的抗干扰性能;
  (8)外配计算机或仪表的供电要和变频器的动力装置供电分开,尽量避免共享一个内部变压器;
  (9)在受干扰的仪表设备方面也要进行独立屏蔽,市场上的温控器、pid调节器、plc、传感器或变送器等仪表,都要加装金属屏蔽外壳并与保安地相连。必要时,可在此类仪表的电源进线端加装上述的电感式磁环滤波器。
3 防止变频器漏电断路器误动作技术
  在日常使用中碰到有在变频器输入电路中配置漏电保护器的,但是送电后漏电断路器经常会跳脱,原因又找不到,许多人都认为是变频器品质出了问题,其实这里面是有原因的,现就这个问题做一分析。
  3.1 漏电断路器额定电流设计
  变频器输出是以pwm(脉宽调制,类似高速开关)方式控制,因此会发生高频率的漏电电流,若要在变频器一次侧加装一般漏电断路开关时,建议请以每台变频器选择200ma以上的感度电流且动作时间为0.1s以上的漏电断路开关使用,但不保证该漏电断路开关一定不会跳脱,必须考虑下列各因素才能决定系统漏电电流之大小,并选定适当的漏电断路开关及必要措施来改善送电后漏电断路器跳脱之现象。
  一般漏电断路开关之额定电流选择计算公式如下(参见附图):
001.jpg

  i△n ≥ 10〔ig1+ign+3(ig2+igm)〕
  式中:ig1、ig2:工业运转时电缆线之漏电电流;
  ign:变频器输入侧噪声滤波器之漏电电流;
  igm:工业运转时电动机的漏电电流。
  由上述公式之相关变动参数得知,会影响漏电电流大小的因素有:
  (1)电缆线的漏电电流有两部分
  一是漏电断路开关滤波器的电缆线长的漏电电流;
  二是变频器电动机的电缆线长的漏电电流。
  (2)滤波器的漏电电流 (包含变频器在内);
  (3)电动机的漏电电流。
  3.2 各部分漏电电流值
  (1)电缆线的漏电电流=a(实际电缆线长/1000);电缆厂商提供各线径每1000m之漏电电流值a;
  (2)滤波器的漏电电流
  (包含变频器在内)—变频器供应厂商提供。例如:台达vfd055b43b用滤波器为26tdt1w4b4其漏电电流最大值为70ma;
  (3)电动机的漏电电流—电动机供应厂商提供。
  3.3 设计举例
  使用变频器于圆盘针织机应用,前端使用了漏电保护,但是经常跳脱,分析如下:变频器功率为5.5kw,漏电断路器漏电电流75ma。以过去经验来评估时,在一切正常的情况下其中因电缆线长及电动机本体的漏电电流影响不大,主要影响因素有滤波器的漏电电流(含变频器在内)及负载侧是否依第三种接地(10ω以下)施工,故建议如下:
  (1)若电源侧一定要装漏电断路开关,建议选择200ma以上的感度电流且动作时间为0.1s以上之漏电断路关开,但不保证该漏电断路开关一定不会跳脱,必须符合在其它对象(电缆线长及电动机)是正常的漏电流范围内及负载侧是依第3种接地(10ω以下)施工下才有效。
  (2)若电源侧一定要装现有漏电断路器(75ma), 建议输入电源不经现有的滤波器而直接输入到变频器,减少因为滤波器的漏电电流(含变频器在内)造成现有漏电断路器(75ma)跳脱。
  (3)将现有漏电断路器(75ma)自电源系统脱离,将电源直接输入滤波器再转接到变频器即可。
4 变频器输入输出保护技术
  变频器具有强大的保护功能,泛指的是输出保护。从设计的角度来说,变频器输入端的保护,到目前为止还是一个难题。主要是没有一种既能快速切断高压大电流,又具有较低成本的器件。因此,如何防止高电压大电流对变频器输入端的冲击是应用中的重要问题。
  4.1 变频器的供电电压条件
  以台达kg系列变频器为例:
  230v系列  单相电源200/208/220/230     50/60hz;
  460v系列  三相电源380/400/415/440/460   50/60hz;
  电压波动范围:±10% 频率波动范围:±5%。
  台达kg系列变频器220v系列和440v系列的输入电压若过低,变频器会出现欠压保护,不会损坏变频器。台达变频器220v系列的输入电压若高于265v或者440v系列的输入电压高于500v,变频器的直流母线电压将超过极限,可能会严重损坏变频器。因此,在电源电压不稳或者在自发电供电源的场合使用变频器,特别要注意变频器的额定电压是否满足供电电源要求。
  4.2 输入接触器
  台达变频器说明书上的输入接触器,是给变频器提供输入电源的开关。绝不能将其作为变频器的启动或停止开关来使用。否则可能会造成变频器的损坏。
  4.3 一台变频器输出控制多台电机
  (1)多台电机同步启动和停止,同频升降速。此种应用方式要注意功率匹配。不能简单地选用变频器的功率等于多台电机功率之和,应该放大变频器的功率档使用。
  注意﹗变频器输出应直接和电机相联接,中间不能用继电器。
  (2)不允许多台电机异步启动和异步停止。因为这种控制方式,变频器输出要接继电器。所以原则上是不允许的!异步启动时,第一台电机启动是不会有问题的。但第二台电机启动时,变频器输出侧电压则很高,此时,第二台电机相当于全压启动,它的启动电流约是自身额定电流的7-8倍,远超过变频器的额定电流。
  第一台电机在异步停止时,变频器输出电压一定很高,此时继电器在开关电机时,电感性负载会产生很高的瞬间反向电压,远超过变频器内部器件的额定电压,变频器不是过压报警就是过压损坏。
  多台电机异步切换是必须在前一台变频器停止后,才可以切换到下一台变频器的启动。
  4.4 台达变频器的e接地线
  (1)零线。零线是发电机输出的中心线,不论在客户端是否为零电位,都不能把零线作为地线接在变频器的e端!
  (2)变频器的n接线端。变频器的n接线端,是变频器内直流母线的负端,应接至煞车模块。既不能把它当做接地线端,更不能错接至电源零线。
  (3)保安地。台达变频器的e接地线应接至保安地,也就是电机的外壳。避免高压突变电压波冲击以及噪声的干扰。
5 结束语
  本文根针对变频器工程应用中3个比较特殊的技术问题,以台达kg系列变频器为例,给出解决实际问题的原理设计方法。其技术原理实际上也适用于一般的变频器工程应用条件。
1770309616 发表于 2012-3-14 00:20:20
西门子PLC间接寻址

  寻址,就是指定指令要进行操作的地址。给定指令操作的地址方法,就是寻址方法。
  在谈间接寻址之前,我们简单的了解一下直接寻址。所谓直接寻址,简单的说,就是直接给出指令的确切操作数,象上面所说的,A Q2.0,就是直接寻址,对于A这个指令来说,Q2.0就是它要进行操作的地址。
  这样看来,间接寻址就是间接的给出指令的确切操作数。对,就是这个概念。
  比如:A Q【MD100】 ,A T【DBW100】。程序语句中用方刮号 【 】 标明的内容,间接的指明了指令要进行的地址,这两个语句中的MD100和DBW100称为指针Pointer,它指向它们其中包含的数值,才是指令真正要执行的地址区域的确切位置。间接由此得名。
  西门子的间接寻址方式计有两大类型:存储器间接寻址和寄存器间接寻址。
  【存储器间接寻址】
  存储器间接寻址的地址给定格式是:地址标识符+指针。指针所指示存储单元中所包含的数值,就是地址的确切数值单元。
  存储器间接寻址具有两个指针格式:单字和双字。
  单字指针是一个16bit的结构,从0-15bit,指示一个从0-65535的数值,这个数值就是被寻址的存储区域的编号。
  双字指针是一个32bit的结构,从0-2bit,共三位,按照8进制指示被寻址的位编号,也就是0-7;而从3-18bit,共16位,指示一个从0-65535的数值,这个数值就是被寻址的字节编号。
  指针可以存放在M、DI、DB和L区域中,也就是说,可以用这些区域的内容来做指针。
  单字指针和双字指针在使用上有很大区别。下面举例说明:

  L DW#16#35 //将32位16进制数35存入ACC1
  T MD2 //这个值再存入MD2,这是个32位的位存储区域
  L +10 //将16位整数10存入ACC1,32位16进制数35自动移动到ACC2
  T MW100 //这个值再存入MW100,这是个16位的位存储区域
  OPN DBW【MW100】 //打开DBW10。这里的【MW100】就是个单字指针,存放指针的区域是M区,
  MW100中的值10,就是指针间接指定的地址,它是个16位的值!
  --------
  L L#+10 //以32位形式,把10放入ACC1,此时,ACC2中的内容为:16位整数10
  T MD104 //这个值再存入MD104,这是个32位的位存储区域
  A I【MD104】 //对I1.2进行与逻辑操作!
  =DIX【MD2】 //赋值背景数据位DIX6.5!
xiandawuok 发表于 2012-3-24 08:10:19
谢谢分享
tanemin 发表于 2012-3-26 19:49:51
整个看下来花了好长时间
您需要登录后才可以发表评论 登录 | 立即注册

厂商推荐

关于我们  -  服务条款  -  使用指南  -  站点地图  -  友情链接  -  联系我们
电子工程网 © 版权所有   京ICP备16069177号 | 京公网安备11010502021702
快速回复 返回顶部 返回列表