一种2Gsps数字示波器数据采集系统的设计

发布时间:2010-8-18 11:03    发布者:lavida
关键词: 2Gsps , 数据采集 , 数字示波器
数据采集系统是数字存储示波器的核心部分,在示波器采集控制电路的控制下,数据采集系统将待测的模拟信号量化后进行缓存,供示波器软件系统进行数据的处理、运算、显示。随着计算机技术的不断发展,高速ADC的性能不断提高,功能强大的DSP信号处理的实时性越来越强,可编程的逻辑器件的性能不断提升,为示波器数据采集系统的实现提供了一个可靠而且实用的数字平台。相应的,数据采集系统的采样速率、存储深度、波形捕获能力、鉴别能力等指标也在不断提高。国际上,示波器行业像安捷伦泰克等公司在数字存储示波器市场上占据了主导地位,均有实时采样率达到几十Gsps的示波器面市,但是由于受到器件和工艺的限制,国内实现真正的高速高分辨率的数据采集系统还具有比较大的困难。  

本文采用ADC+高频时钟电路+FPGA+DSP的结构模式,设计了一种实时采样率为2 Gsps的数字存储示波器数据采集系统,为国内高速高分辨率的数据采集系统的研制提供了一个参考方案。  

1 关键器件选择  

DSO数据采集系统的主要技术指标:a)双输入通道同时工作,每通道最高实时采样率达到2 Gsps;b)垂直分辨率8 bit;c)存储深度:8 MB/CH。整个系统的关键器件包括ADC、高频时钟芯片、FPGA、DSP、SRAM。通过对目标系统主要技术指标的分析,结合数字存储示波器的应用特性,选择了以下一系列器件。  

数据采集系统要求达到的最高实时采样率为2 Gsps,同时考虑目标系统所要求的垂直分辨率、数据输出格式,另外兼顾示波器的模拟带宽以及器件的购买渠道和性价比,选择了Atmel公司的AT84AD001。AT84AD001是双通道ADC,每一通道具有1 Gsps的实时采样率,在交错模式下双路ADC并行采样可以达到2 Gsps的实时采样率。其分辨率为8 bit,数据输出格式是LVDS(Low Voltage Differential Signaling),具有1:1数据输出或1:2数据输出模式可选,此外,全功率输人带宽(-3 dB)为1.5 GHz,差分电压输入范围为500 mVVpp。  

此外,重要的一点,AT84AD001还具有FISDA(Fine Sampling Delay Adjustment on Channel Q)功能,通过调整Q通道的采样时刻,有效地避免了因为采样时钟的占空比不等于50%而造成的误差,保证了采样精度。  

高速高精度的ADC对采样时钟的精度要求非常高,时钟电路一般的设计方法是直接利用FPGA内部的锁相环倍频电路产生,但是目标系统要求采样时钟频率达到1 GHz,而目前AlteraXilinx公司的高端FPGA其I/O输出频率最高只能达到800MHz。经过综合评价,最终选定了美国NS公司的高频时钟芯片LMX2531LQ1910E。其输出低段频率为917 MHz~1 014 MHz,满足设计要求,此外,LMX2531具有非常低的抖动和相位噪声。而且还集成了低噪声、高性能的低压差线性稳压器LDO(Low Drop Out regulator)元件,使电路的抗干扰性和稳定性得到了提高。  

FPGA的可编程性以及丰富的内部逻辑资源和外部I/O资源,用来作为数字存储示波器数据采集与控制系统。特别地,单片AT84AD001量化输出是16路1 Gbps速率、LVDS格式的差分数据,目标系统双输入通道同时工作,这就要求FPGA具有32个能支持1 Gbps的差分I/O,利用高速I/O将数据接收并存储。由此,选择了Altera公司的Stratix II EP2S60F1020C4,该FPGA最多可以支持多达84个1 Gbps的差分通道,并且增加了源同步通道的动态相位对准电路,为高速数据的接受提供了有力的支持。  

在示波器的高速数据采集系统中,需要对采集到的数据进行大量实时性的运算和处理,综合考虑市面上的各款处理器,选择ADI公司的DSP芯片Blackfin561作为嵌入式计算系统。Blackfin561主频最高可达750 MHz,其内核包含2个16位乘加器MAC(Multiplier and Accumulator)、2个40位累加器ALU、1个40位移位器、100KB的片内L1存储器以及128 KB的片内L2存储器SRAM,同时具有动态电源管理功能。此外,Blackfin处理器还包括丰富的外设接口,满足设计的需要。  

本文设计的数字存储示波器的存储深度要求达到每通道8 MB,而FPGA芯片Stratix II EP2S60F1020C4的片内存储单元总共只有552 KB,所以,必须采用片外存储器作为采集RAM来存储量化后的波形数据,经过综合考虑,选用美国赛普拉斯公司的SRAM芯片CY7C1440AV33。  

2 系统结构  

本文设计的数据采集系统采用ADC+高速时钟电路+FPGA+SRAM+DSP的结构模式,其系统结构如图1所示。通道1、通道2均采用一片最高实时采样率为2 Gsps的AT84AD001作为模数转换器完成对模拟输入信号的量化,高频时钟电路用来产生整个数据采集系统所需要的工作时钟,FPGA用来完成采样数据的接收,并且实现FPGA与DSP的接口电路;SRAM作为数据采集系统的采集RAM,完成将量化后的波形数据缓存;DSP作为数据采集系统的主控机,完成对采集电路的控制和接收采集电路采集的数据,并对采样数据进行处理、分析和显示。  


  
3 硬件设计  

3.1 目标系统高速时钟电路的设计  

通过LMX2531的标准的三线串行接口(CLK,DATA,LE)对其编程,以控制LMX2531能够输出期望的频率。时钟输出频率大小的计算公式为:  

fout=N×(OSCin/R) (1)  

其中,N=Ninteger+Nfractional(包括整数和小数两部分),Ninteger的值即为Ⅳ分频器的值,Nfractional的值包括NUM和DEN两部分的值,R代表R分频器的值,OSCin为参考时钟输入值。R分频器的值可以由用户在1,2,4,8,16,32中任选一个,而且参考时钟输入OSCin和输出频率fout也是用户自己决定的。根据设计要求,确定各个寄存器的具体取值,将计算好的数据写入芯片内的11个24位控制寄存器,从而得到ADC需要的1 GHz的时钟。  

3.2 AT84AD001工作模式的设置  

AT84AD001的工作时序如图2所示。I,Q通道ADC都使用I通道输入模拟信号,I通道工作时钟频率为1 GHz,Q通道的工作时钟与I通道工作时钟同频反相,在这种模式下,通过两个实时采样率为1 Gsps的ADC按照交替方式并行采样,将得到的数据按照一定的输出格式拼合成2 Gsps的数据流。  


  
3.3 FPGA内部逻辑模块介绍  

FPGA内部逻辑模块主要包括:  

1)时基电路模块:接收AT84AD001的输出数据同步锁存时钟作为FPGA内部的工作时钟,并且为数据采集系统提供时间基准尺度。  

2)数据采集接口、存储接口模块:利用  

FPGA的串行收发器SERDES(Serializer/Deserializer)和动态相位对准DPA(Dynamic Phase Alignment)电路接收LVDS格式、1 Gbps速率的差分数据流,并且对其降频,然后根据差分通道和ADC数据位的对应顺序以及接收器数据的输出格式,设计恢复电路,将64位的数据按采样点的格式恢复为8个采样点,最后在FPGA与片外存储器之间建立数据存储接口,将数据按照一定的速率和格式写入片外存储器。  

3)采集控制模块:利用采集状态机,配合软件系统完成对整个采集过程进行管理,按照设定的预触发和后触发数据量完成成整个采集工程。  

4)触发控制模块:用来实现信号特征点的捕捉及波形显示的同步。  

5)计算系统接口模块:完成FPGA和DSP之间的通信。  


  
其中,采集状态机作为采集控制模块的核心,负责整个数据采集过程的控制,具有举足轻重的地位。它是一个用VHDL语言编制的状态机,其状态转换如图3所示。图3中状态转换所涉及的采集状态说明如表1所示。  


  
4 数据采集系统监控软件设计  

为了便于测试整个硬件的工作,在DSP中编制了简单的监控程序,程序流程图如图4所示。首先,DSP调用时钟芯片和ADC的初始化程序,完成对高速时钟电路和采集电路的初始化,使其工作在目标系统所需要的工作模式下;然后发出采集开始命令,数据采集系统进入采集过程;延迟一段时间以后,查询采集结束标志;当得知采集过程结束时,便从RAM中读取波形数据,经过分析处理后送去显示。  


  
5 调试结果  

5.1 实时采样率的分析  

均是10 MHz,150 mvVpp正弦波,在软件开发环境Visual DSP++中运行数据采集系统监控程序,得到通道1和通道2的采样数据,利用VDSP中的调试工具分别以通道1和通道2的采样数据作为数据源,经过通道校准,调整每一通道的模数转换器所包含的双通道ADC之间的偏移和模拟信号增益存在的差别。选取任意400个采样点以折线图的形式恢复出采样波形,如图5所示。  


  
从采到的波形数据提取连续400个采样点恢复出波形,正好显示了两个信号周期,另外恢复出的波形的幅度与信源幅度相符合,可以得知通道1、通道2均实现了2 Gsps的实时采样率。  

5.2 有效位数(ENOB)的分析  

有效位数(ENOB)是衡量数据采集系统动态特性的一个最为重要的指标。计算公式为:ENOB=(SINAD-1.16 dB)/6.02 。 SINAD是信号幅度的均方根值与从直流到fs/2的带宽内所有其他频谱成分的均方根值的比值(包括谐波但不包括直流成分)。其计算公式为:  


  
通道1、通道2的输入信号均是10 MHz,330 mVVpp的正弦波,在VDSP中运行数据采集系统监控程序,得到通道1和通道2的采样数据,从每个通道的采样数据中各取任意连续1 024个采样点作为测试数据,利用Matlab编程,计算其有效位数(ENOB)分别是:6.71(通道1),6.77(通道2)。由以上计算结果得知该数据采集系统具有较高的量化分辨率。  

6 结论  

通过实验板硬件调试与软件仿真,设计了双通道同时工作,每通道最高实时采样率为2 Gsps,分辨力为8 bit,存储深度8 MB/CH的数字示波器数据采集系统,并且验证了实验板上的数据传输和数据存储均能满足2 Gsps数据采集系统的要求。
本文地址:https://www.eechina.com/thread-22153-1-1.html     【打印本页】

本站部分文章为转载或网友发布,目的在于传递和分享信息,并不代表本网赞同其观点和对其真实性负责;文章版权归原作者及原出处所有,如涉及作品内容、版权和其它问题,我们将根据著作权人的要求,第一时间更正或删除。
您需要登录后才可以发表评论 登录 | 立即注册

厂商推荐

相关视频

关于我们  -  服务条款  -  使用指南  -  站点地图  -  友情链接  -  联系我们
电子工程网 © 版权所有   京ICP备16069177号 | 京公网安备11010502021702
快速回复 返回顶部 返回列表