选择相干光学采集系统的关键因素

发布时间:2015-10-19 11:02    发布者:看门狗
关键词: 相干光学 , 光学采集 , 光学网络
作者: Dean Miles  

随着数据需求的增长,网络运营商一直在寻找新的方法来提高现有光学网络的数据吞吐量。为了达到100Gb/s、400Gb/s、1Tb/s甚至更高的速度,复杂的调制格式变得非常流行。这些调制格式使得设计师选择测试设备时面临新的挑战。

典型的相干光学采集系统由三个重要构建模块组成,它们是相干接收器、数字化仪(一般是示波器),以及某种形式的算术处理模块。诸如相干接收器带宽或示波器采样率等特定性能参数对测量的信号质量有明显的影响。然而,还有许多其它因素影响相干光学采集系统的选择,它们虽然不是那么明显,但在成功的测试系统中也发挥着同样重要的作用。

实现低的误差矢量幅度


低的误差矢量幅度(EVM)和误码率(BER)对任何相干光学采集系统来说都是基本要求。有许多系统损伤和配置问题会影响最终的光学EVM性能。

在光学调制分析仪(OMA)的接收器内,EVM可能受到许多接收器问题的影响,比如:IQ相位角度误差,IQ增益失衡,IQ偏移误差,以及XY极化偏移误差。有关这些类型误差的好消息是,它们都可以精确测量,它们的影响可以在通常位于相干检测之后的算术处理中通过校准消除。OMA对EVM测量的主要影响也可以得到校正。

一旦收到信号后,下一步就是由多通道示波器在电信号路径上进行数字化。就示波器而言,有许多仪器因素会影响EVM,最基本的是示波器带宽和采样率。测试100G相干光学信号的大多数工程师使用4通道示波器,其带宽在23GHz到33GHz范围,采样率在50GSs到100GS/s范围。400G系统评估则要求使用70GHz带宽、200GS/s采样率的示波器。

假设使用了具有合适带宽和采样率的示波器,而且所有OMA损伤都通过算术方法得到了校正,那么最低可测EVM可归结为示波器有效位数(ENOB)的函数。

EVM定义


IEC/TR 61282 101标准最近对EVM进行了定义。本文中的EVM定义如下。误差矢量被简单地认为就是从实际测量符号指向该符号在信号星座图中预期位置的矢量。“参考”或预期符号位置由调制类型所定义,只是总体信号幅度除外。对于一组符号来说,参考幅度被认为是导致该组最小EVM的幅度。一旦确定了这个幅度,那么信号和参考符号都要被最大参考符号的幅度所除,以便得到归一化的数据。

用这种方法归一化数据具有将EVM表示为最大参考符号幅度小数的效果。这使得QPSK和QAM EVM之间的比较变得更加困难。许多无线标准选择使用均方根符号幂作为归一化因子。随着时间的推移,光学标准也可能改用这种方法。正是由于这个原因,泰克OM4000软件允许定制归一化因子。默认定义遵循TR标准(见图1)。

1.jpg
图1:TR标准。

这些考虑为表示为百分数的EVM提供了以下公式,见等式1:其中EVM(n)是归一化后的每个符号的误差矢量幅度,N是组里的符号数量。如上所述,TR标准假设由最大参考符号进行归一化。

2.jpg
公式 (1)

EVM精度和可再现性


有多种因素会限制EVM的精度和可再现性,这些因素一般可分为系统性或随机噪声贡献。系统性误差主要是相干接收器不理想造成的。接收器的不理想特性包括I-Q相位误差、I-Q幅度失配、偏移、串扰和频率响应。这些误差可以在数据后处理中得到校正,但仍有残留误差,因为在不理想特性的测量过程中存在某些不确定性。

随机EVM噪声贡献是被最大符号幅度除后的以输入为参考的均方根噪声。因此增加信号功率可以减小这种随机噪声贡献值,直到达到数字化仪动态范围极限。数字化仪瞬时动态范围通常用有效位数或ENOB进行测量。ENOB是理想的数字化仪具有与实际数字化仪相同噪声电平所需的比特数。如果不要求整个数字化仪带宽,通常可以用数字低通滤波器来改善数字化仪的ENOB。因此,低的ENOB是获得最低可能EVM的关键。

异步时间交织

交织对示波器来说并不是什么新技术。一旦带宽要求超过了商用模数转换器(ADC)元件的采样率能力,就有必要寻找其它技术,以便利用现成元件满足这些扩展的要求,或设计新一代的ADC。LeCroy和Keysight公司的示波器都采用了频率交织技术来扩展带宽,但这样做的代价是增加了测量通道中的噪声。对许多应用来说,由于频率交织引起的信号保真度下降是个大问题,因此,泰克选用了不同的方法。

频率交织方法的局限性在于各种频率范围如何叠加在一起重构最终的波形,这个步骤会降低噪声性能。在传统的频率交织方案中,信号采集系统中的每个ADC只看到部分输入频谱。借助泰克获得专利的ATI技术(见图2),所有ADC都能见到完整的频谱,并且具有完整信号路径的对称性。这样不仅能从交织架构中获得带宽性能增益,而且保持了信号的保真度,确保了最高可能的ENOB。

3.jpg
图2:泰克专利性ATI架构可以提供最低的噪声。

对下一代400G和1Tb测试的未来保证


随着技术的进步和测试要求的提高,在公司内或机构内部从一个实验室或开发团队到另一个实验室或开发团队重新部署仪器是很常见的事。需要重申的是,泰克ATI技术的模块化特性在这方面就具有很显著的优势。

系统很容易根据需要并通过分割和重新部署的多个单元按比例缩小到其它项目,从而最大程度地提高资本投资利用率。举例来说,当一个要求4个70GHz通道的项目完工时,实验室能够轻松地将示波器重新部署到其它实验室。一个4单元的配置可以分成两半形成两个系统,或进一步划分为单个单元组成的独立仪器,只需简单地去除UltraSync电缆即可,从而允许4个项目每个使用1台仪器。

4.jpg
图3:从100G测试到400G测试的转移。

上述基于ATI系统的双极性400G系统是利用通过Ultra-Sync电缆连接到一个共用的12.5GHz采样时钟的4台个独立仪器搭建起来的。4台仪器中每台都可以用作完整的独立示波器,不需要任何其它硬件。当要将仪器从最初实验室重新部署到另外的实验室时这种方案提供了很大的灵活性。

其它多仪器示波器架构会采用一台主控仪器来控制多个采集仪。这种方法的缺点是,采集仪器不能被自己使用。在不投资额外控制硬件的条件下将这种系统分成多个独立的示波器基本上是不可能的。

结论性评估的分析


测试与测量相干接收器一般都提供分析和可视化软件。然而,对设计师或研究人员来说,需要一种相干接收器制造商的软件中不存在的特殊类型的测量或可视化功能并不罕见。举例来说,也许研究人员正在评估一种新的相位恢复算法的质量。理想的光学调制分析软件不仅提供用于测量的基本构建模块,而且支持完全定制化的信号处理。

5.jpg
图4:自动化测试可以通过连接到OUI或直接连接到MATLAB工作区实现。

比如泰克的OM1106软件就为这些算法提供了完整的应用编程接口(API)。使用这些API提供实质性功能集的就是OM系列用户接口(OUI)。OUI提供了完整的相干光学工具套件,允许任何用户开展对复杂调制光学信号的详尽分析,不要求用户掌握MATLAB、分析算法或软件编程方面的任何知识。
本文地址:https://www.eechina.com/thread-154454-1-1.html     【打印本页】

本站部分文章为转载或网友发布,目的在于传递和分享信息,并不代表本网赞同其观点和对其真实性负责;文章版权归原作者及原出处所有,如涉及作品内容、版权和其它问题,我们将根据著作权人的要求,第一时间更正或删除。
您需要登录后才可以发表评论 登录 | 立即注册

厂商推荐

关于我们  -  服务条款  -  使用指南  -  站点地图  -  友情链接  -  联系我们
电子工程网 © 版权所有   京ICP备16069177号 | 京公网安备11010502021702
快速回复 返回顶部 返回列表