10W 非隔离 LED 驱动电源的设计

发布时间:2013-9-5 17:01    发布者:eechina
关键词: LED驱动
作者:德州仪器公司 Jacky Zhang

摘要

本文介绍了一款使用 TI 控制芯片 TPS92210 设计的 10W LED 驱动电源. TPS92210 特有的临界模式固定峰值电流控制功能,设计无须反馈,从而整个设计简单,器件少,成本低。

引言

近来,LED 驱动电源市场中,非隔离解决方案由于其磁性元件尺寸更小、能效更高、元件数量更少、总物料单成本更低,以及能以机械设计满足安规等优势,成为应用热点。本文介绍了一款使用 TI 控制芯片 TPS92210 设计的 10W LED 驱动电源. 使用 TPS92210 特有的临界模式固定峰值电流控制功能,设计无须反馈,从而整个设计简单,器件少,成本低,效率高。

1、电源方案介绍

本方案采用TPS92210控制的临界Buck电路,设置TPS92210工作于固定峰值电流的方法,使电感电流峰值固定,因为电路工作在临界模式,所以电感电流的平均值等于峰值电流的一半,从而达到输出恒流的目的。
同时,本方案不需要额外的电路,TPS92210本身可以实现输出过流、短路、开路等保护。所以整个方案的元件少,成本低。
输入采用了填谷电路,使得整机的PF值一直在0.7以上。
C8,L2,C5组成pi型滤波。整机通过了传导测试。

image003.jpg
图 1:10W LED 电源解决方案

image005.jpg
图 2: 10W LED 电源实物图

1.1    TPS92210  临界模式设置

TPS92210 需要满足三个条件来开始一个新的周期:
1)     距离上一次开通的时间需要大于由Ifb电流控制的时间。
2)     距离上一次开通的时间需要大于芯片的最高频率所限制的时间7.5us。
3) Tze脚必须有由高到低的零点穿越。

由于需要满足以上三个条件,设计中将FB脚通过电阻接到Vdd设置一个固定的
直流偏置,使TPS92210的开通完全由Tze脚的电压零点穿越来决定,这就保证了变换器一直工作在临界电流模式。

1.2电感的设计

根据输入输出要求,计算电感量。 本方案中,输入 176V~264Vac,输出 40V,0.25A。由于输入采用了填谷电路,所以输入的电压范围可以计算如下:

image007.jpg

根据上面计算的最小最大输入电压,可以计算最小、最大占空比:

image009.jpg

输出平均电流为 0.25A,电流工作在临界电流模式,电感上的平均电流就是输出电流。可以计算得电感峰值电流、有效值电流分别为:

image011.jpg

因为临界模式的变换器,输入电压越高,工作频率。综合考虑,体积以及效率,设定最大工作频率为 100KHz。

image013.jpg

那么电感量可以计算如下:

image015.jpg

所以电感量大约为 700uH。

根据计算得出的电感量,可以验证最低开关频率为:

image017.jpg

根据计算得出的最大占空比以及最低开关频率,可以得出最大导通时间为:

image019.jpg

Tonmax小于TPS92210所允许设置的最大导通时间 5us。 所以电感设计没有问题。

选择磁芯: 假定 Bmax=2500G,填充系数:k=0.4     电流密度为:j=6A/mm^2可以计算得磁芯所需的 AP 值为:

image021.jpg

根据 AP 值,选择 RM5 作为电感磁芯:

RM5 的 Ae 面积如下,可以计算电感所需要的匝数:

image023.jpg

电感需要大约 67 匝。

根据之前计算的电流 RMS 值,和设定的电流密度 j,选择 AWG30 来绕制电感。

image025.jpg

选用 1 股 AWG30 作为绕组。

2、测试结果

根据以上分析和设计,制作了样机并验证其性能,实验结果如下。

2.1效率测试

image029.gif

2.2 PF 值

image030.jpg

2.3 电流精度

image032.jpg

2.4 启动

image034.jpg

2.5 输出纹波

image036.jpg

2.6 短路保护

image038.jpg

2.7 开路保护

image040.jpg

2.8 EMC 测试

image042.jpg

3、结论

本文分析设计了使用TPS92210 控制的临界模式buck 变换器。 分析了TPS92210临界模式的可行性以及设置方式。详细介绍了电感的计算和设计方法。最后制作了样机验证了分析和计算的正确。保证了TPS92210 用于非隔离恒流LED 驱动电源的可行性。


本文地址:https://www.eechina.com/thread-120388-1-1.html     【打印本页】

本站部分文章为转载或网友发布,目的在于传递和分享信息,并不代表本网赞同其观点和对其真实性负责;文章版权归原作者及原出处所有,如涉及作品内容、版权和其它问题,我们将根据著作权人的要求,第一时间更正或删除。
您需要登录后才可以发表评论 登录 | 立即注册

厂商推荐

相关视频

关于我们  -  服务条款  -  使用指南  -  站点地图  -  友情链接  -  联系我们
电子工程网 © 版权所有   京ICP备16069177号 | 京公网安备11010502021702
快速回复 返回顶部 返回列表